Algebra Examples
f(x)=3x2 , g(x)=x+1 , (f∘g)
Step 1
Set up the composite result function.
f(g(x))
Step 2
Evaluate f(x+1) by substituting in the value of g into f.
f(x+1)=3(x+1)2
Step 3
Rewrite (x+1)2 as (x+1)(x+1).
f(x+1)=3((x+1)(x+1))
Step 4
Step 4.1
Apply the distributive property.
f(x+1)=3(x(x+1)+1(x+1))
Step 4.2
Apply the distributive property.
f(x+1)=3(x⋅x+x⋅1+1(x+1))
Step 4.3
Apply the distributive property.
f(x+1)=3(x⋅x+x⋅1+1x+1⋅1)
f(x+1)=3(x⋅x+x⋅1+1x+1⋅1)
Step 5
Step 5.1
Simplify each term.
Step 5.1.1
Multiply x by x.
f(x+1)=3(x2+x⋅1+1x+1⋅1)
Step 5.1.2
Multiply x by 1.
f(x+1)=3(x2+x+1x+1⋅1)
Step 5.1.3
Multiply x by 1.
f(x+1)=3(x2+x+x+1⋅1)
Step 5.1.4
Multiply 1 by 1.
f(x+1)=3(x2+x+x+1)
f(x+1)=3(x2+x+x+1)
Step 5.2
Add x and x.
f(x+1)=3(x2+2x+1)
f(x+1)=3(x2+2x+1)
Step 6
Apply the distributive property.
f(x+1)=3x2+3(2x)+3⋅1
Step 7
Step 7.1
Multiply 2 by 3.
f(x+1)=3x2+6x+3⋅1
Step 7.2
Multiply 3 by 1.
f(x+1)=3x2+6x+3
f(x+1)=3x2+6x+3