Algebra Examples

Solve the Function Operation
f(x)=x2+3x+4 , g(x)=x1 , (fg)
Step 1
Set up the composite result function.
f(g(x))
Step 2
Evaluate f(x1) by substituting in the value of g into f.
f(x1)=(x1)2+3(x1)+4
Step 3
Simplify each term.
Tap for more steps...
Step 3.1
Rewrite (x1)2 as (x1)(x1).
f(x1)=(x1)(x1)+3(x1)+4
Step 3.2
Expand (x1)(x1) using the FOIL Method.
Tap for more steps...
Step 3.2.1
Apply the distributive property.
f(x1)=x(x1)1(x1)+3(x1)+4
Step 3.2.2
Apply the distributive property.
f(x1)=xx+x11(x1)+3(x1)+4
Step 3.2.3
Apply the distributive property.
f(x1)=xx+x11x11+3(x1)+4
f(x1)=xx+x11x11+3(x1)+4
Step 3.3
Simplify and combine like terms.
Tap for more steps...
Step 3.3.1
Simplify each term.
Tap for more steps...
Step 3.3.1.1
Multiply x by x.
f(x1)=x2+x11x11+3(x1)+4
Step 3.3.1.2
Move 1 to the left of x.
f(x1)=x21x1x11+3(x1)+4
Step 3.3.1.3
Rewrite 1x as x.
f(x1)=x2x1x11+3(x1)+4
Step 3.3.1.4
Rewrite 1x as x.
f(x1)=x2xx11+3(x1)+4
Step 3.3.1.5
Multiply 1 by 1.
f(x1)=x2xx+1+3(x1)+4
f(x1)=x2xx+1+3(x1)+4
Step 3.3.2
Subtract x from x.
f(x1)=x22x+1+3(x1)+4
f(x1)=x22x+1+3(x1)+4
Step 3.4
Apply the distributive property.
f(x1)=x22x+1+3x+31+4
Step 3.5
Multiply 3 by 1.
f(x1)=x22x+1+3x3+4
f(x1)=x22x+1+3x3+4
Step 4
Simplify by adding terms.
Tap for more steps...
Step 4.1
Add 2x and 3x.
f(x1)=x2+x+13+4
Step 4.2
Simplify by adding and subtracting.
Tap for more steps...
Step 4.2.1
Subtract 3 from 1.
f(x1)=x2+x2+4
Step 4.2.2
Add 2 and 4.
f(x1)=x2+x+2
f(x1)=x2+x+2
f(x1)=x2+x+2
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 x2  12  π  xdx  
AmazonPay