Algebra Examples
f(x)=x2f(x)=x2 , g(x)=4x-1g(x)=4x−1
Step 1
Replace the function designators with the actual functions in f(x)⋅(g(x))f(x)⋅(g(x)).
(x2)⋅(4x-1)(x2)⋅(4x−1)
Step 2
Step 2.1
Simplify by multiplying through.
Step 2.1.1
Apply the distributive property.
x2(4x)+x2⋅-1x2(4x)+x2⋅−1
Step 2.1.2
Reorder.
Step 2.1.2.1
Rewrite using the commutative property of multiplication.
4x2x+x2⋅-14x2x+x2⋅−1
Step 2.1.2.2
Move -1−1 to the left of x2x2.
4x2x-1⋅x24x2x−1⋅x2
4x2x-1⋅x24x2x−1⋅x2
4x2x-1⋅x24x2x−1⋅x2
Step 2.2
Simplify each term.
Step 2.2.1
Multiply x2x2 by xx by adding the exponents.
Step 2.2.1.1
Move xx.
4(x⋅x2)-1⋅x24(x⋅x2)−1⋅x2
Step 2.2.1.2
Multiply xx by x2x2.
Step 2.2.1.2.1
Raise xx to the power of 11.
4(x1x2)-1⋅x24(x1x2)−1⋅x2
Step 2.2.1.2.2
Use the power rule aman=am+n to combine exponents.
4x1+2-1⋅x2
4x1+2-1⋅x2
Step 2.2.1.3
Add 1 and 2.
4x3-1⋅x2
4x3-1⋅x2
Step 2.2.2
Rewrite -1x2 as -x2.
4x3-x2
4x3-x2
4x3-x2