Algebra Examples
27x4−x
Step 1
Step 1.1
Factor x out of 27x4.
x(27x3)−x
Step 1.2
Factor x out of −x.
x(27x3)+x⋅−1
Step 1.3
Factor x out of x(27x3)+x⋅−1.
x(27x3−1)
x(27x3−1)
Step 2
Rewrite 27x3 as (3x)3.
x((3x)3−1)
Step 3
Rewrite 1 as 13.
x((3x)3−13)
Step 4
Since both terms are perfect cubes, factor using the difference of cubes formula, a3−b3=(a−b)(a2+ab+b2) where a=3x and b=1.
x((3x−1)((3x)2+3x⋅1+12))
Step 5
Step 5.1
Simplify.
Step 5.1.1
Apply the product rule to 3x.
x((3x−1)(32x2+3x⋅1+12))
Step 5.1.2
Raise 3 to the power of 2.
x((3x−1)(9x2+3x⋅1+12))
Step 5.1.3
Multiply 3 by 1.
x((3x−1)(9x2+3x+12))
Step 5.1.4
One to any power is one.
x((3x−1)(9x2+3x+1))
x((3x−1)(9x2+3x+1))
Step 5.2
Remove unnecessary parentheses.
x(3x−1)(9x2+3x+1)
x(3x−1)(9x2+3x+1)