Algebra Examples

[4231]
Step 1
Find the eigenvalues.
Tap for more steps...
Step 1.1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI2)
Step 1.2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI2).
Tap for more steps...
Step 1.3.1
Substitute [4231] for A.
p(λ)=determinant([4231]-λI2)
Step 1.3.2
Substitute [1001] for I2.
p(λ)=determinant([4231]-λ[1001])
p(λ)=determinant([4231]-λ[1001])
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Simplify each term.
Tap for more steps...
Step 1.4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([4231]+[-λ1-λ0-λ0-λ1])
Step 1.4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 1.4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([4231]+[-λ-λ0-λ0-λ1])
Step 1.4.1.2.2
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([4231]+[-λ0λ-λ0-λ1])
Step 1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([4231]+[-λ0-λ0-λ1])
p(λ)=determinant([4231]+[-λ0-λ0-λ1])
Step 1.4.1.2.3
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([4231]+[-λ00λ-λ1])
Step 1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([4231]+[-λ00-λ1])
p(λ)=determinant([4231]+[-λ00-λ1])
Step 1.4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([4231]+[-λ00-λ])
p(λ)=determinant([4231]+[-λ00-λ])
p(λ)=determinant([4231]+[-λ00-λ])
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[4-λ2+03+01-λ]
Step 1.4.3
Simplify each element.
Tap for more steps...
Step 1.4.3.1
Add 2 and 0.
p(λ)=determinant[4-λ23+01-λ]
Step 1.4.3.2
Add 3 and 0.
p(λ)=determinant[4-λ231-λ]
p(λ)=determinant[4-λ231-λ]
p(λ)=determinant[4-λ231-λ]
Step 1.5
Find the determinant.
Tap for more steps...
Step 1.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(4-λ)(1-λ)-32
Step 1.5.2
Simplify the determinant.
Tap for more steps...
Step 1.5.2.1
Simplify each term.
Tap for more steps...
Step 1.5.2.1.1
Expand (4-λ)(1-λ) using the FOIL Method.
Tap for more steps...
Step 1.5.2.1.1.1
Apply the distributive property.
p(λ)=4(1-λ)-λ(1-λ)-32
Step 1.5.2.1.1.2
Apply the distributive property.
p(λ)=41+4(-λ)-λ(1-λ)-32
Step 1.5.2.1.1.3
Apply the distributive property.
p(λ)=41+4(-λ)-λ1-λ(-λ)-32
p(λ)=41+4(-λ)-λ1-λ(-λ)-32
Step 1.5.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 1.5.2.1.2.1
Simplify each term.
Tap for more steps...
Step 1.5.2.1.2.1.1
Multiply 4 by 1.
p(λ)=4+4(-λ)-λ1-λ(-λ)-32
Step 1.5.2.1.2.1.2
Multiply -1 by 4.
p(λ)=4-4λ-λ1-λ(-λ)-32
Step 1.5.2.1.2.1.3
Multiply -1 by 1.
p(λ)=4-4λ-λ-λ(-λ)-32
Step 1.5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=4-4λ-λ-1-1λλ-32
Step 1.5.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 1.5.2.1.2.1.5.1
Move λ.
p(λ)=4-4λ-λ-1-1(λλ)-32
Step 1.5.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=4-4λ-λ-1-1λ2-32
p(λ)=4-4λ-λ-1-1λ2-32
Step 1.5.2.1.2.1.6
Multiply -1 by -1.
p(λ)=4-4λ-λ+1λ2-32
Step 1.5.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=4-4λ-λ+λ2-32
p(λ)=4-4λ-λ+λ2-32
Step 1.5.2.1.2.2
Subtract λ from -4λ.
p(λ)=4-5λ+λ2-32
p(λ)=4-5λ+λ2-32
Step 1.5.2.1.3
Multiply -3 by 2.
p(λ)=4-5λ+λ2-6
p(λ)=4-5λ+λ2-6
Step 1.5.2.2
Subtract 6 from 4.
p(λ)=-5λ+λ2-2
Step 1.5.2.3
Reorder -5λ and λ2.
p(λ)=λ2-5λ-2
p(λ)=λ2-5λ-2
p(λ)=λ2-5λ-2
Step 1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2-5λ-2=0
Step 1.7
Solve for λ.
Tap for more steps...
Step 1.7.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 1.7.2
Substitute the values a=1, b=-5, and c=-2 into the quadratic formula and solve for λ.
5±(-5)2-4(1-2)21
Step 1.7.3
Simplify.
Tap for more steps...
Step 1.7.3.1
Simplify the numerator.
Tap for more steps...
Step 1.7.3.1.1
Raise -5 to the power of 2.
λ=5±25-41-221
Step 1.7.3.1.2
Multiply -41-2.
Tap for more steps...
Step 1.7.3.1.2.1
Multiply -4 by 1.
λ=5±25-4-221
Step 1.7.3.1.2.2
Multiply -4 by -2.
λ=5±25+821
λ=5±25+821
Step 1.7.3.1.3
Add 25 and 8.
λ=5±3321
λ=5±3321
Step 1.7.3.2
Multiply 2 by 1.
λ=5±332
λ=5±332
Step 1.7.4
The final answer is the combination of both solutions.
λ=5+332,5-332
λ=5+332,5-332
λ=5+332,5-332
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI2)
Step 3
Find the eigenvector using the eigenvalue λ=5+332.
Tap for more steps...
Step 3.1
Substitute the known values into the formula.
N([4231]-5+332[1001])
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Multiply -5+332 by each element of the matrix.
[4231]+[-5+3321-5+3320-5+3320-5+3321]
Step 3.2.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 3.2.1.2.1
Multiply -1 by 1.
[4231]+[-5+332-5+3320-5+3320-5+3321]
Step 3.2.1.2.2
Multiply -5+3320.
Tap for more steps...
Step 3.2.1.2.2.1
Multiply 0 by -1.
[4231]+[-5+33205+332-5+3320-5+3321]
Step 3.2.1.2.2.2
Multiply 0 by 5+332.
[4231]+[-5+3320-5+3320-5+3321]
[4231]+[-5+3320-5+3320-5+3321]
Step 3.2.1.2.3
Multiply -5+3320.
Tap for more steps...
Step 3.2.1.2.3.1
Multiply 0 by -1.
[4231]+[-5+332005+332-5+3321]
Step 3.2.1.2.3.2
Multiply 0 by 5+332.
[4231]+[-5+33200-5+3321]
[4231]+[-5+33200-5+3321]
Step 3.2.1.2.4
Multiply -1 by 1.
[4231]+[-5+33200-5+332]
[4231]+[-5+33200-5+332]
[4231]+[-5+33200-5+332]
Step 3.2.2
Add the corresponding elements.
[4-5+3322+03+01-5+332]
Step 3.2.3
Simplify each element.
Tap for more steps...
Step 3.2.3.1
To write 4 as a fraction with a common denominator, multiply by 22.
[422-5+3322+03+01-5+332]
Step 3.2.3.2
Combine 4 and 22.
[422-5+3322+03+01-5+332]
Step 3.2.3.3
Combine the numerators over the common denominator.
[42-(5+33)22+03+01-5+332]
Step 3.2.3.4
Simplify the numerator.
Tap for more steps...
Step 3.2.3.4.1
Multiply 4 by 2.
[8-(5+33)22+03+01-5+332]
Step 3.2.3.4.2
Apply the distributive property.
[8-15-3322+03+01-5+332]
Step 3.2.3.4.3
Multiply -1 by 5.
[8-5-3322+03+01-5+332]
Step 3.2.3.4.4
Subtract 5 from 8.
[3-3322+03+01-5+332]
[3-3322+03+01-5+332]
Step 3.2.3.5
Add 2 and 0.
[3-33223+01-5+332]
Step 3.2.3.6
Add 3 and 0.
[3-332231-5+332]
Step 3.2.3.7
Write 1 as a fraction with a common denominator.
[3-3322322-5+332]
Step 3.2.3.8
Combine the numerators over the common denominator.
[3-332232-(5+33)2]
Step 3.2.3.9
Simplify the numerator.
Tap for more steps...
Step 3.2.3.9.1
Apply the distributive property.
[3-332232-15-332]
Step 3.2.3.9.2
Multiply -1 by 5.
[3-332232-5-332]
Step 3.2.3.9.3
Subtract 5 from 2.
[3-33223-3-332]
[3-33223-3-332]
Step 3.2.3.10
Rewrite -3 as -1(3).
[3-33223-1(3)-332]
Step 3.2.3.11
Factor -1 out of -33.
[3-33223-1(3)-(33)2]
Step 3.2.3.12
Factor -1 out of -1(3)-(33).
[3-33223-1(3+33)2]
Step 3.2.3.13
Move the negative in front of the fraction.
[3-33223-3+332]
[3-33223-3+332]
[3-33223-3+332]
Step 3.3
Find the null space when λ=5+332.
Tap for more steps...
Step 3.3.1
Write as an augmented matrix for Ax=0.
[3-332203-3+3320]
Step 3.3.2
Find the reduced row echelon form.
Tap for more steps...
Step 3.3.2.1
Multiply each element of R1 by 23-33 to make the entry at 1,1 a 1.
Tap for more steps...
Step 3.3.2.1.1
Multiply each element of R1 by 23-33 to make the entry at 1,1 a 1.
[23-333-33223-33223-3303-3+3320]
Step 3.3.2.1.2
Simplify R1.
[1-3+33603-3+3320]
[1-3+33603-3+3320]
Step 3.3.2.2
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 3.3.2.2.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[1-3+33603-31-3+332-3(-3+336)0-30]
Step 3.3.2.2.2
Simplify R2.
[1-3+3360000]
[1-3+3360000]
[1-3+3360000]
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
x-3+336y=0
0=0
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xy]=[y2+y336y]
Step 3.3.5
Write the solution as a linear combination of vectors.
[xy]=y[12+3361]
Step 3.3.6
Write as a solution set.
{y[12+3361]|yR}
Step 3.3.7
The solution is the set of vectors created from the free variables of the system.
{[12+3361]}
{[12+3361]}
{[12+3361]}
Step 4
Find the eigenvector using the eigenvalue λ=5-332.
Tap for more steps...
Step 4.1
Substitute the known values into the formula.
N([4231]-5-332[1001])
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Multiply -5-332 by each element of the matrix.
[4231]+[-5-3321-5-3320-5-3320-5-3321]
Step 4.2.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.2.1.2.1
Multiply -1 by 1.
[4231]+[-5-332-5-3320-5-3320-5-3321]
Step 4.2.1.2.2
Multiply -5-3320.
Tap for more steps...
Step 4.2.1.2.2.1
Multiply 0 by -1.
[4231]+[-5-33205-332-5-3320-5-3321]
Step 4.2.1.2.2.2
Multiply 0 by 5-332.
[4231]+[-5-3320-5-3320-5-3321]
[4231]+[-5-3320-5-3320-5-3321]
Step 4.2.1.2.3
Multiply -5-3320.
Tap for more steps...
Step 4.2.1.2.3.1
Multiply 0 by -1.
[4231]+[-5-332005-332-5-3321]
Step 4.2.1.2.3.2
Multiply 0 by 5-332.
[4231]+[-5-33200-5-3321]
[4231]+[-5-33200-5-3321]
Step 4.2.1.2.4
Multiply -1 by 1.
[4231]+[-5-33200-5-332]
[4231]+[-5-33200-5-332]
[4231]+[-5-33200-5-332]
Step 4.2.2
Add the corresponding elements.
[4-5-3322+03+01-5-332]
Step 4.2.3
Simplify each element.
Tap for more steps...
Step 4.2.3.1
To write 4 as a fraction with a common denominator, multiply by 22.
[422-5-3322+03+01-5-332]
Step 4.2.3.2
Combine 4 and 22.
[422-5-3322+03+01-5-332]
Step 4.2.3.3
Combine the numerators over the common denominator.
[42-(5-33)22+03+01-5-332]
Step 4.2.3.4
Simplify the numerator.
Tap for more steps...
Step 4.2.3.4.1
Multiply 4 by 2.
[8-(5-33)22+03+01-5-332]
Step 4.2.3.4.2
Apply the distributive property.
[8-15--3322+03+01-5-332]
Step 4.2.3.4.3
Multiply -1 by 5.
[8-5--3322+03+01-5-332]
Step 4.2.3.4.4
Multiply --33.
Tap for more steps...
Step 4.2.3.4.4.1
Multiply -1 by -1.
[8-5+13322+03+01-5-332]
Step 4.2.3.4.4.2
Multiply 33 by 1.
[8-5+3322+03+01-5-332]
[8-5+3322+03+01-5-332]
Step 4.2.3.4.5
Subtract 5 from 8.
[3+3322+03+01-5-332]
[3+3322+03+01-5-332]
Step 4.2.3.5
Add 2 and 0.
[3+33223+01-5-332]
Step 4.2.3.6
Add 3 and 0.
[3+332231-5-332]
Step 4.2.3.7
Write 1 as a fraction with a common denominator.
[3+3322322-5-332]
Step 4.2.3.8
Combine the numerators over the common denominator.
[3+332232-(5-33)2]
Step 4.2.3.9
Simplify the numerator.
Tap for more steps...
Step 4.2.3.9.1
Apply the distributive property.
[3+332232-15--332]
Step 4.2.3.9.2
Multiply -1 by 5.
[3+332232-5--332]
Step 4.2.3.9.3
Multiply --33.
Tap for more steps...
Step 4.2.3.9.3.1
Multiply -1 by -1.
[3+332232-5+1332]
Step 4.2.3.9.3.2
Multiply 33 by 1.
[3+332232-5+332]
[3+332232-5+332]
Step 4.2.3.9.4
Subtract 5 from 2.
[3+33223-3+332]
[3+33223-3+332]
Step 4.2.3.10
Rewrite -3 as -1(3).
[3+33223-1(3)+332]
Step 4.2.3.11
Factor -1 out of 33.
[3+33223-1(3)-1(-33)2]
Step 4.2.3.12
Factor -1 out of -1(3)-1(-33).
[3+33223-1(3-33)2]
Step 4.2.3.13
Move the negative in front of the fraction.
[3+33223-3-332]
[3+33223-3-332]
[3+33223-3-332]
Step 4.3
Find the null space when λ=5-332.
Tap for more steps...
Step 4.3.1
Write as an augmented matrix for Ax=0.
[3+332203-3-3320]
Step 4.3.2
Find the reduced row echelon form.
Tap for more steps...
Step 4.3.2.1
Multiply each element of R1 by 23+33 to make the entry at 1,1 a 1.
Tap for more steps...
Step 4.3.2.1.1
Multiply each element of R1 by 23+33 to make the entry at 1,1 a 1.
[23+333+33223+33223+3303-3-3320]
Step 4.3.2.1.2
Simplify R1.
[1-3-33603-3-3320]
[1-3-33603-3-3320]
Step 4.3.2.2
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 4.3.2.2.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[1-3-33603-31-3-332-3(-3-336)0-30]
Step 4.3.2.2.2
Simplify R2.
[1-3-3360000]
[1-3-3360000]
[1-3-3360000]
Step 4.3.3
Use the result matrix to declare the final solution to the system of equations.
x-3-336y=0
0=0
Step 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xy]=[y2-y336y]
Step 4.3.5
Write the solution as a linear combination of vectors.
[xy]=y[12-3361]
Step 4.3.6
Write as a solution set.
{y[12-3361]|yR}
Step 4.3.7
The solution is the set of vectors created from the free variables of the system.
{[12-3361]}
{[12-3361]}
{[12-3361]}
Step 5
The eigenspace of A is the list of the vector space for each eigenvalue.
{[12+3361],[12-3361]}
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay