Algebra Examples

[24681012120]
Step 1
Find the eigenvalues.
Tap for more steps...
Step 1.1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI3)
Step 1.2
The identity matrix or unit matrix of size 3 is the 3×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI3).
Tap for more steps...
Step 1.3.1
Substitute [24681012120] for A.
p(λ)=determinant([24681012120]-λI3)
Step 1.3.2
Substitute [100010001] for I3.
p(λ)=determinant([24681012120]-λ[100010001])
p(λ)=determinant([24681012120]-λ[100010001])
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Simplify each term.
Tap for more steps...
Step 1.4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([24681012120]+[-λ1-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
Step 1.4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 1.4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([24681012120]+[-λ-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
Step 1.4.1.2.2
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([24681012120]+[-λ0λ-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
Step 1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([24681012120]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
p(λ)=determinant([24681012120]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
Step 1.4.1.2.3
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([24681012120]+[-λ00λ-λ0-λ1-λ0-λ0-λ0-λ1])
Step 1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([24681012120]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])
p(λ)=determinant([24681012120]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])
Step 1.4.1.2.4
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([24681012120]+[-λ000λ-λ1-λ0-λ0-λ0-λ1])
Step 1.4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([24681012120]+[-λ000-λ1-λ0-λ0-λ0-λ1])
p(λ)=determinant([24681012120]+[-λ000-λ1-λ0-λ0-λ0-λ1])
Step 1.4.1.2.5
Multiply -1 by 1.
p(λ)=determinant([24681012120]+[-λ000-λ-λ0-λ0-λ0-λ1])
Step 1.4.1.2.6
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.6.1
Multiply 0 by -1.
p(λ)=determinant([24681012120]+[-λ000-λ0λ-λ0-λ0-λ1])
Step 1.4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant([24681012120]+[-λ000-λ0-λ0-λ0-λ1])
p(λ)=determinant([24681012120]+[-λ000-λ0-λ0-λ0-λ1])
Step 1.4.1.2.7
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([24681012120]+[-λ000-λ00λ-λ0-λ1])
Step 1.4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([24681012120]+[-λ000-λ00-λ0-λ1])
p(λ)=determinant([24681012120]+[-λ000-λ00-λ0-λ1])
Step 1.4.1.2.8
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([24681012120]+[-λ000-λ000λ-λ1])
Step 1.4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([24681012120]+[-λ000-λ000-λ1])
p(λ)=determinant([24681012120]+[-λ000-λ000-λ1])
Step 1.4.1.2.9
Multiply -1 by 1.
p(λ)=determinant([24681012120]+[-λ000-λ000-λ])
p(λ)=determinant([24681012120]+[-λ000-λ000-λ])
p(λ)=determinant([24681012120]+[-λ000-λ000-λ])
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[2-λ4+06+08+010-λ12+01+02+00-λ]
Step 1.4.3
Simplify each element.
Tap for more steps...
Step 1.4.3.1
Add 4 and 0.
p(λ)=determinant[2-λ46+08+010-λ12+01+02+00-λ]
Step 1.4.3.2
Add 6 and 0.
p(λ)=determinant[2-λ468+010-λ12+01+02+00-λ]
Step 1.4.3.3
Add 8 and 0.
p(λ)=determinant[2-λ46810-λ12+01+02+00-λ]
Step 1.4.3.4
Add 12 and 0.
p(λ)=determinant[2-λ46810-λ121+02+00-λ]
Step 1.4.3.5
Add 1 and 0.
p(λ)=determinant[2-λ46810-λ1212+00-λ]
Step 1.4.3.6
Add 2 and 0.
p(λ)=determinant[2-λ46810-λ12120-λ]
Step 1.4.3.7
Subtract λ from 0.
p(λ)=determinant[2-λ46810-λ1212-λ]
p(λ)=determinant[2-λ46810-λ1212-λ]
p(λ)=determinant[2-λ46810-λ1212-λ]
Step 1.5
Find the determinant.
Tap for more steps...
Step 1.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 1.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|10-λ122-λ|
Step 1.5.1.4
Multiply element a11 by its cofactor.
(2-λ)|10-λ122-λ|
Step 1.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|8121-λ|
Step 1.5.1.6
Multiply element a12 by its cofactor.
-4|8121-λ|
Step 1.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|810-λ12|
Step 1.5.1.8
Multiply element a13 by its cofactor.
6|810-λ12|
Step 1.5.1.9
Add the terms together.
p(λ)=(2-λ)|10-λ122-λ|-4|8121-λ|+6|810-λ12|
p(λ)=(2-λ)|10-λ122-λ|-4|8121-λ|+6|810-λ12|
Step 1.5.2
Evaluate |10-λ122-λ|.
Tap for more steps...
Step 1.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(2-λ)((10-λ)(-λ)-212)-4|8121-λ|+6|810-λ12|
Step 1.5.2.2
Simplify the determinant.
Tap for more steps...
Step 1.5.2.2.1
Simplify each term.
Tap for more steps...
Step 1.5.2.2.1.1
Apply the distributive property.
p(λ)=(2-λ)(10(-λ)-λ(-λ)-212)-4|8121-λ|+6|810-λ12|
Step 1.5.2.2.1.2
Multiply -1 by 10.
p(λ)=(2-λ)(-10λ-λ(-λ)-212)-4|8121-λ|+6|810-λ12|
Step 1.5.2.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=(2-λ)(-10λ-1-1λλ-212)-4|8121-λ|+6|810-λ12|
Step 1.5.2.2.1.4
Simplify each term.
Tap for more steps...
Step 1.5.2.2.1.4.1
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 1.5.2.2.1.4.1.1
Move λ.
p(λ)=(2-λ)(-10λ-1-1(λλ)-212)-4|8121-λ|+6|810-λ12|
Step 1.5.2.2.1.4.1.2
Multiply λ by λ.
p(λ)=(2-λ)(-10λ-1-1λ2-212)-4|8121-λ|+6|810-λ12|
p(λ)=(2-λ)(-10λ-1-1λ2-212)-4|8121-λ|+6|810-λ12|
Step 1.5.2.2.1.4.2
Multiply -1 by -1.
p(λ)=(2-λ)(-10λ+1λ2-212)-4|8121-λ|+6|810-λ12|
Step 1.5.2.2.1.4.3
Multiply λ2 by 1.
p(λ)=(2-λ)(-10λ+λ2-212)-4|8121-λ|+6|810-λ12|
p(λ)=(2-λ)(-10λ+λ2-212)-4|8121-λ|+6|810-λ12|
Step 1.5.2.2.1.5
Multiply -2 by 12.
p(λ)=(2-λ)(-10λ+λ2-24)-4|8121-λ|+6|810-λ12|
p(λ)=(2-λ)(-10λ+λ2-24)-4|8121-λ|+6|810-λ12|
Step 1.5.2.2.2
Reorder -10λ and λ2.
p(λ)=(2-λ)(λ2-10λ-24)-4|8121-λ|+6|810-λ12|
p(λ)=(2-λ)(λ2-10λ-24)-4|8121-λ|+6|810-λ12|
p(λ)=(2-λ)(λ2-10λ-24)-4|8121-λ|+6|810-λ12|
Step 1.5.3
Evaluate |8121-λ|.
Tap for more steps...
Step 1.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(2-λ)(λ2-10λ-24)-4(8(-λ)-112)+6|810-λ12|
Step 1.5.3.2
Simplify each term.
Tap for more steps...
Step 1.5.3.2.1
Multiply -1 by 8.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-112)+6|810-λ12|
Step 1.5.3.2.2
Multiply -1 by 12.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6|810-λ12|
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6|810-λ12|
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6|810-λ12|
Step 1.5.4
Evaluate |810-λ12|.
Tap for more steps...
Step 1.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(82-(10-λ))
Step 1.5.4.2
Simplify the determinant.
Tap for more steps...
Step 1.5.4.2.1
Simplify each term.
Tap for more steps...
Step 1.5.4.2.1.1
Multiply 8 by 2.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(16-(10-λ))
Step 1.5.4.2.1.2
Apply the distributive property.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(16-110--λ)
Step 1.5.4.2.1.3
Multiply -1 by 10.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(16-10--λ)
Step 1.5.4.2.1.4
Multiply --λ.
Tap for more steps...
Step 1.5.4.2.1.4.1
Multiply -1 by -1.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(16-10+1λ)
Step 1.5.4.2.1.4.2
Multiply λ by 1.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(16-10+λ)
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(16-10+λ)
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(16-10+λ)
Step 1.5.4.2.2
Subtract 10 from 16.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(6+λ)
Step 1.5.4.2.3
Reorder 6 and λ.
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(λ+6)
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(λ+6)
p(λ)=(2-λ)(λ2-10λ-24)-4(-8λ-12)+6(λ+6)
Step 1.5.5
Simplify the determinant.
Tap for more steps...
Step 1.5.5.1
Simplify each term.
Tap for more steps...
Step 1.5.5.1.1
Expand (2-λ)(λ2-10λ-24) by multiplying each term in the first expression by each term in the second expression.
p(λ)=2λ2+2(-10λ)+2-24-λλ2-λ(-10λ)-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2
Simplify each term.
Tap for more steps...
Step 1.5.5.1.2.1
Multiply -10 by 2.
p(λ)=2λ2-20λ+2-24-λλ2-λ(-10λ)-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.2
Multiply 2 by -24.
p(λ)=2λ2-20λ-48-λλ2-λ(-10λ)-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.3
Multiply λ by λ2 by adding the exponents.
Tap for more steps...
Step 1.5.5.1.2.3.1
Move λ2.
p(λ)=2λ2-20λ-48-(λ2λ)-λ(-10λ)-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.3.2
Multiply λ2 by λ.
Tap for more steps...
Step 1.5.5.1.2.3.2.1
Raise λ to the power of 1.
p(λ)=2λ2-20λ-48-(λ2λ1)-λ(-10λ)-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=2λ2-20λ-48-λ2+1-λ(-10λ)-λ-24-4(-8λ-12)+6(λ+6)
p(λ)=2λ2-20λ-48-λ2+1-λ(-10λ)-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.3.3
Add 2 and 1.
p(λ)=2λ2-20λ-48-λ3-λ(-10λ)-λ-24-4(-8λ-12)+6(λ+6)
p(λ)=2λ2-20λ-48-λ3-λ(-10λ)-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.4
Rewrite using the commutative property of multiplication.
p(λ)=2λ2-20λ-48-λ3-1-10λλ-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 1.5.5.1.2.5.1
Move λ.
p(λ)=2λ2-20λ-48-λ3-1-10(λλ)-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.5.2
Multiply λ by λ.
p(λ)=2λ2-20λ-48-λ3-1-10λ2-λ-24-4(-8λ-12)+6(λ+6)
p(λ)=2λ2-20λ-48-λ3-1-10λ2-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.6
Multiply -1 by -10.
p(λ)=2λ2-20λ-48-λ3+10λ2-λ-24-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.2.7
Multiply -24 by -1.
p(λ)=2λ2-20λ-48-λ3+10λ2+24λ-4(-8λ-12)+6(λ+6)
p(λ)=2λ2-20λ-48-λ3+10λ2+24λ-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.3
Add 2λ2 and 10λ2.
p(λ)=12λ2-20λ-48-λ3+24λ-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.4
Add -20λ and 24λ.
p(λ)=12λ2+4λ-48-λ3-4(-8λ-12)+6(λ+6)
Step 1.5.5.1.5
Apply the distributive property.
p(λ)=12λ2+4λ-48-λ3-4(-8λ)-4-12+6(λ+6)
Step 1.5.5.1.6
Multiply -8 by -4.
p(λ)=12λ2+4λ-48-λ3+32λ-4-12+6(λ+6)
Step 1.5.5.1.7
Multiply -4 by -12.
p(λ)=12λ2+4λ-48-λ3+32λ+48+6(λ+6)
Step 1.5.5.1.8
Apply the distributive property.
p(λ)=12λ2+4λ-48-λ3+32λ+48+6λ+66
Step 1.5.5.1.9
Multiply 6 by 6.
p(λ)=12λ2+4λ-48-λ3+32λ+48+6λ+36
p(λ)=12λ2+4λ-48-λ3+32λ+48+6λ+36
Step 1.5.5.2
Combine the opposite terms in 12λ2+4λ-48-λ3+32λ+48+6λ+36.
Tap for more steps...
Step 1.5.5.2.1
Add -48 and 48.
p(λ)=12λ2+4λ-λ3+32λ+0+6λ+36
Step 1.5.5.2.2
Add 12λ2+4λ-λ3+32λ and 0.
p(λ)=12λ2+4λ-λ3+32λ+6λ+36
p(λ)=12λ2+4λ-λ3+32λ+6λ+36
Step 1.5.5.3
Add 4λ and 32λ.
p(λ)=12λ2-λ3+36λ+6λ+36
Step 1.5.5.4
Add 36λ and 6λ.
p(λ)=12λ2-λ3+42λ+36
Step 1.5.5.5
Reorder 12λ2 and -λ3.
p(λ)=-λ3+12λ2+42λ+36
p(λ)=-λ3+12λ2+42λ+36
p(λ)=-λ3+12λ2+42λ+36
Step 1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
-λ3+12λ2+42λ+36=0
Step 1.7
Solve for λ.
Tap for more steps...
Step 1.7.1
Graph each side of the equation. The solution is the x-value of the point of intersection.
λ14.96690066
λ14.96690066
λ14.96690066
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI3)
Step 3
Find the eigenvector using the eigenvalue λ=14.96690066.
Tap for more steps...
Step 3.1
Substitute the known values into the formula.
N([24681012120]-14.96690066[100010001])
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Multiply -14.96690066 by each element of the matrix.
[24681012120]+[-14.966900661-14.966900660-14.966900660-14.966900660-14.966900661-14.966900660-14.966900660-14.966900660-14.966900661]
Step 3.2.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 3.2.1.2.1
Multiply -14.96690066 by 1.
[24681012120]+[-14.96690066-14.966900660-14.966900660-14.966900660-14.966900661-14.966900660-14.966900660-14.966900660-14.966900661]
Step 3.2.1.2.2
Multiply -14.96690066 by 0.
[24681012120]+[-14.966900660-14.966900660-14.966900660-14.966900661-14.966900660-14.966900660-14.966900660-14.966900661]
Step 3.2.1.2.3
Multiply -14.96690066 by 0.
[24681012120]+[-14.9669006600-14.966900660-14.966900661-14.966900660-14.966900660-14.966900660-14.966900661]
Step 3.2.1.2.4
Multiply -14.96690066 by 0.
[24681012120]+[-14.96690066000-14.966900661-14.966900660-14.966900660-14.966900660-14.966900661]
Step 3.2.1.2.5
Multiply -14.96690066 by 1.
[24681012120]+[-14.96690066000-14.96690066-14.966900660-14.966900660-14.966900660-14.966900661]
Step 3.2.1.2.6
Multiply -14.96690066 by 0.
[24681012120]+[-14.96690066000-14.966900660-14.966900660-14.966900660-14.966900661]
Step 3.2.1.2.7
Multiply -14.96690066 by 0.
[24681012120]+[-14.96690066000-14.9669006600-14.966900660-14.966900661]
Step 3.2.1.2.8
Multiply -14.96690066 by 0.
[24681012120]+[-14.96690066000-14.96690066000-14.966900661]
Step 3.2.1.2.9
Multiply -14.96690066 by 1.
[24681012120]+[-14.96690066000-14.96690066000-14.96690066]
[24681012120]+[-14.96690066000-14.96690066000-14.96690066]
[24681012120]+[-14.96690066000-14.96690066000-14.96690066]
Step 3.2.2
Add the corresponding elements.
[2-14.966900664+06+08+010-14.9669006612+01+02+00-14.96690066]
Step 3.2.3
Simplify each element.
Tap for more steps...
Step 3.2.3.1
Subtract 14.96690066 from 2.
[-12.966900664+06+08+010-14.9669006612+01+02+00-14.96690066]
Step 3.2.3.2
Add 4 and 0.
[-12.9669006646+08+010-14.9669006612+01+02+00-14.96690066]
Step 3.2.3.3
Add 6 and 0.
[-12.96690066468+010-14.9669006612+01+02+00-14.96690066]
Step 3.2.3.4
Add 8 and 0.
[-12.9669006646810-14.9669006612+01+02+00-14.96690066]
Step 3.2.3.5
Subtract 14.96690066 from 10.
[-12.96690066468-4.9669006612+01+02+00-14.96690066]
Step 3.2.3.6
Add 12 and 0.
[-12.96690066468-4.96690066121+02+00-14.96690066]
Step 3.2.3.7
Add 1 and 0.
[-12.96690066468-4.966900661212+00-14.96690066]
Step 3.2.3.8
Add 2 and 0.
[-12.96690066468-4.9669006612120-14.96690066]
Step 3.2.3.9
Subtract 14.96690066 from 0.
[-12.96690066468-4.966900661212-14.96690066]
[-12.96690066468-4.966900661212-14.96690066]
[-12.96690066468-4.966900661212-14.96690066]
Step 3.3
Find the null space when λ=14.96690066.
Tap for more steps...
Step 3.3.1
Write as an augmented matrix for Ax=0.
[-12.966900664608-4.9669006612012-14.966900660]
Step 3.3.2
Find the reduced row echelon form.
Tap for more steps...
Step 3.3.2.1
Multiply each element of R1 by 1-12.96690066 to make the entry at 1,1 a 1.
Tap for more steps...
Step 3.3.2.1.1
Multiply each element of R1 by 1-12.96690066 to make the entry at 1,1 a 1.
[-12.96690066-12.966900664-12.966900666-12.966900660-12.966900668-4.9669006612012-14.966900660]
Step 3.3.2.1.2
Simplify R1.
[1-0.30847772-0.4627165808-4.9669006612012-14.966900660]
[1-0.30847772-0.4627165808-4.9669006612012-14.966900660]
Step 3.3.2.2
Perform the row operation R2=R2-8R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 3.3.2.2.1
Perform the row operation R2=R2-8R1 to make the entry at 2,1 a 0.
[1-0.30847772-0.4627165808-81-4.96690066-8-0.3084777212-8-0.462716580-8012-14.966900660]
Step 3.3.2.2.2
Simplify R2.
[1-0.30847772-0.4627165800-2.4990788815.70173268012-14.966900660]
[1-0.30847772-0.4627165800-2.4990788815.70173268012-14.966900660]
Step 3.3.2.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Tap for more steps...
Step 3.3.2.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1-0.30847772-0.4627165800-2.4990788815.7017326801-12+0.30847772-14.96690066+0.462716580-0]
Step 3.3.2.3.2
Simplify R3.
[1-0.30847772-0.4627165800-2.4990788815.70173268002.30847772-14.504184080]
[1-0.30847772-0.4627165800-2.4990788815.70173268002.30847772-14.504184080]
Step 3.3.2.4
Multiply each element of R2 by 1-2.49907888 to make the entry at 2,2 a 1.
Tap for more steps...
Step 3.3.2.4.1
Multiply each element of R2 by 1-2.49907888 to make the entry at 2,2 a 1.
[1-0.30847772-0.4627165800-2.49907888-2.49907888-2.4990788815.70173268-2.499078880-2.4990788802.30847772-14.504184080]
Step 3.3.2.4.2
Simplify R2.
[1-0.30847772-0.46271658001-6.28300803002.30847772-14.504184080]
[1-0.30847772-0.46271658001-6.28300803002.30847772-14.504184080]
Step 3.3.2.5
Perform the row operation R3=R3-2.30847772R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 3.3.2.5.1
Perform the row operation R3=R3-2.30847772R2 to make the entry at 3,2 a 0.
[1-0.30847772-0.46271658001-6.2830080300-2.3084777202.30847772-2.308477721-14.50418408-2.30847772-6.283008030-2.308477720]
Step 3.3.2.5.2
Simplify R3.
[1-0.30847772-0.46271658001-6.2830080300000]
[1-0.30847772-0.46271658001-6.2830080300000]
Step 3.3.2.6
Multiply each element of R3 by 12.750401610-12 to make the entry at 3,3 a 1.
Tap for more steps...
Step 3.3.2.6.1
Multiply each element of R3 by 12.750401610-12 to make the entry at 3,3 a 1.
[1-0.30847772-0.46271658001-6.28300803002.750401610-1202.750401610-1202.750401610-1202.750401610-12]
Step 3.3.2.6.2
Simplify R3.
[1-0.30847772-0.46271658001-6.2830080300010]
[1-0.30847772-0.46271658001-6.2830080300010]
Step 3.3.2.7
Perform the row operation R2=R2+6.28300803R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 3.3.2.7.1
Perform the row operation R2=R2+6.28300803R3 to make the entry at 2,3 a 0.
[1-0.30847772-0.4627165800+6.2830080301+6.283008030-6.28300803+6.2830080310+6.2830080300010]
Step 3.3.2.7.2
Simplify R2.
[1-0.30847772-0.46271658001000010]
[1-0.30847772-0.46271658001000010]
Step 3.3.2.8
Perform the row operation R1=R1+0.46271658R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 3.3.2.8.1
Perform the row operation R1=R1+0.46271658R3 to make the entry at 1,3 a 0.
[1+0.462716580-0.30847772+0.462716580-0.46271658+0.4627165810+0.46271658001000010]
Step 3.3.2.8.2
Simplify R1.
[1-0.308477720001000010]
[1-0.308477720001000010]
Step 3.3.2.9
Perform the row operation R1=R1+0.30847772R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 3.3.2.9.1
Perform the row operation R1=R1+0.30847772R2 to make the entry at 1,2 a 0.
[1+0.308477720-0.30847772+0.3084777210+0.3084777200+0.30847772001000010]
Step 3.3.2.9.2
Simplify R1.
[100001000010]
[100001000010]
[100001000010]
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
x=0
y=0
z=0
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[000]
Step 3.3.5
Write as a solution set.
{[000]}
{[000]}
{[000]}
Step 4
The eigenspace of A is the list of the vector space for each eigenvalue.
{[000]}
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay