Algebra Examples
[221100021]⎡⎢⎣221100021⎤⎥⎦
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI3)p(λ)=determinant(A−λI3)
Step 2
The identity matrix or unit matrix of size 33 is the 3×33×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]⎡⎢⎣100010001⎤⎥⎦
Step 3
Step 3.1
Substitute [221100021]⎡⎢⎣221100021⎤⎥⎦ for AA.
p(λ)=determinant([221100021]-λI3)p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦−λI3⎞⎟⎠
Step 3.2
Substitute [100010001]⎡⎢⎣100010001⎤⎥⎦ for I3I3.
p(λ)=determinant([221100021]-λ[100010001])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦−λ⎡⎢⎣100010001⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]-λ[100010001])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦−λ⎡⎢⎣100010001⎤⎥⎦⎞⎟⎠
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ−λ by each element of the matrix.
p(λ)=determinant([221100021]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1−1 by 11.
p(λ)=determinant([221100021]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ−λ⋅0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.2
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.2.1
Multiply 00 by -1−1.
p(λ)=determinant([221100021]+[-λ0λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ0λ−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.3
Multiply -λ⋅0.
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([221100021]+[-λ00λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([221100021]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([221100021]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4
Multiply -λ⋅0.
Step 4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([221100021]+[-λ000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([221100021]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([221100021]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5
Multiply -1 by 1.
p(λ)=determinant([221100021]+[-λ000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6
Multiply -λ⋅0.
Step 4.1.2.6.1
Multiply 0 by -1.
p(λ)=determinant([221100021]+[-λ000-λ0λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant([221100021]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([221100021]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7
Multiply -λ⋅0.
Step 4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([221100021]+[-λ000-λ00λ-λ⋅0-λ⋅1])
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([221100021]+[-λ000-λ00-λ⋅0-λ⋅1])
p(λ)=determinant([221100021]+[-λ000-λ00-λ⋅0-λ⋅1])
Step 4.1.2.8
Multiply -λ⋅0.
Step 4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([221100021]+[-λ000-λ000λ-λ⋅1])
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([221100021]+[-λ000-λ000-λ⋅1])
p(λ)=determinant([221100021]+[-λ000-λ000-λ⋅1])
Step 4.1.2.9
Multiply -1 by 1.
p(λ)=determinant([221100021]+[-λ000-λ000-λ])
p(λ)=determinant([221100021]+[-λ000-λ000-λ])
p(λ)=determinant([221100021]+[-λ000-λ000-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[2-λ2+01+01+00-λ0+00+02+01-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 2 and 0.
p(λ)=determinant[2-λ21+01+00-λ0+00+02+01-λ]
Step 4.3.2
Add 1 and 0.
p(λ)=determinant[2-λ211+00-λ0+00+02+01-λ]
Step 4.3.3
Add 1 and 0.
p(λ)=determinant[2-λ2110-λ0+00+02+01-λ]
Step 4.3.4
Subtract λ from 0.
p(λ)=determinant[2-λ211-λ0+00+02+01-λ]
Step 4.3.5
Add 0 and 0.
p(λ)=determinant[2-λ211-λ00+02+01-λ]
Step 4.3.6
Add 0 and 0.
p(λ)=determinant[2-λ211-λ002+01-λ]
Step 4.3.7
Add 2 and 0.
p(λ)=determinant[2-λ211-λ0021-λ]
p(λ)=determinant[2-λ211-λ0021-λ]
p(λ)=determinant[2-λ211-λ0021-λ]
Step 5
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-λ021-λ|
Step 5.1.4
Multiply element a11 by its cofactor.
(2-λ)|-λ021-λ|
Step 5.1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2121-λ|
Step 5.1.6
Multiply element a21 by its cofactor.
-1|2121-λ|
Step 5.1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|21-λ0|
Step 5.1.8
Multiply element a31 by its cofactor.
0|21-λ0|
Step 5.1.9
Add the terms together.
p(λ)=(2-λ)|-λ021-λ|-1|2121-λ|+0|21-λ0|
p(λ)=(2-λ)|-λ021-λ|-1|2121-λ|+0|21-λ0|
Step 5.2
Multiply 0 by |21-λ0|.
p(λ)=(2-λ)|-λ021-λ|-1|2121-λ|+0
Step 5.3
Evaluate |-λ021-λ|.
Step 5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(2-λ)(-λ(1-λ)-2⋅0)-1|2121-λ|+0
Step 5.3.2
Simplify the determinant.
Step 5.3.2.1
Simplify each term.
Step 5.3.2.1.1
Apply the distributive property.
p(λ)=(2-λ)(-λ⋅1-λ(-λ)-2⋅0)-1|2121-λ|+0
Step 5.3.2.1.2
Multiply -1 by 1.
p(λ)=(2-λ)(-λ-λ(-λ)-2⋅0)-1|2121-λ|+0
Step 5.3.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=(2-λ)(-λ-1⋅-1λ⋅λ-2⋅0)-1|2121-λ|+0
Step 5.3.2.1.4
Simplify each term.
Step 5.3.2.1.4.1
Multiply λ by λ by adding the exponents.
Step 5.3.2.1.4.1.1
Move λ.
p(λ)=(2-λ)(-λ-1⋅-1(λ⋅λ)-2⋅0)-1|2121-λ|+0
Step 5.3.2.1.4.1.2
Multiply λ by λ.
p(λ)=(2-λ)(-λ-1⋅-1λ2-2⋅0)-1|2121-λ|+0
p(λ)=(2-λ)(-λ-1⋅-1λ2-2⋅0)-1|2121-λ|+0
Step 5.3.2.1.4.2
Multiply -1 by -1.
p(λ)=(2-λ)(-λ+1λ2-2⋅0)-1|2121-λ|+0
Step 5.3.2.1.4.3
Multiply λ2 by 1.
p(λ)=(2-λ)(-λ+λ2-2⋅0)-1|2121-λ|+0
p(λ)=(2-λ)(-λ+λ2-2⋅0)-1|2121-λ|+0
Step 5.3.2.1.5
Multiply -2 by 0.
p(λ)=(2-λ)(-λ+λ2+0)-1|2121-λ|+0
p(λ)=(2-λ)(-λ+λ2+0)-1|2121-λ|+0
Step 5.3.2.2
Add -λ+λ2 and 0.
p(λ)=(2-λ)(-λ+λ2)-1|2121-λ|+0
Step 5.3.2.3
Reorder -λ and λ2.
p(λ)=(2-λ)(λ2-λ)-1|2121-λ|+0
p(λ)=(2-λ)(λ2-λ)-1|2121-λ|+0
p(λ)=(2-λ)(λ2-λ)-1|2121-λ|+0
Step 5.4
Evaluate |2121-λ|.
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(2-λ)(λ2-λ)-1(2(1-λ)-2⋅1)+0
Step 5.4.2
Simplify the determinant.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Apply the distributive property.
p(λ)=(2-λ)(λ2-λ)-1(2⋅1+2(-λ)-2⋅1)+0
Step 5.4.2.1.2
Multiply 2 by 1.
p(λ)=(2-λ)(λ2-λ)-1(2+2(-λ)-2⋅1)+0
Step 5.4.2.1.3
Multiply -1 by 2.
p(λ)=(2-λ)(λ2-λ)-1(2-2λ-2⋅1)+0
Step 5.4.2.1.4
Multiply -2 by 1.
p(λ)=(2-λ)(λ2-λ)-1(2-2λ-2)+0
p(λ)=(2-λ)(λ2-λ)-1(2-2λ-2)+0
Step 5.4.2.2
Combine the opposite terms in 2-2λ-2.
Step 5.4.2.2.1
Subtract 2 from 2.
p(λ)=(2-λ)(λ2-λ)-1(-2λ+0)+0
Step 5.4.2.2.2
Add -2λ and 0.
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
Step 5.5
Simplify the determinant.
Step 5.5.1
Add (2-λ)(λ2-λ)-1(-2λ) and 0.
p(λ)=(2-λ)(λ2-λ)-1(-2λ)
Step 5.5.2
Simplify each term.
Step 5.5.2.1
Expand (2-λ)(λ2-λ) using the FOIL Method.
Step 5.5.2.1.1
Apply the distributive property.
p(λ)=2(λ2-λ)-λ(λ2-λ)-1(-2λ)
Step 5.5.2.1.2
Apply the distributive property.
p(λ)=2λ2+2(-λ)-λ(λ2-λ)-1(-2λ)
Step 5.5.2.1.3
Apply the distributive property.
p(λ)=2λ2+2(-λ)-λ⋅λ2-λ(-λ)-1(-2λ)
p(λ)=2λ2+2(-λ)-λ⋅λ2-λ(-λ)-1(-2λ)
Step 5.5.2.2
Simplify and combine like terms.
Step 5.5.2.2.1
Simplify each term.
Step 5.5.2.2.1.1
Multiply -1 by 2.
p(λ)=2λ2-2λ-λ⋅λ2-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2
Multiply λ by λ2 by adding the exponents.
Step 5.5.2.2.1.2.1
Move λ2.
p(λ)=2λ2-2λ-(λ2λ)-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2.2
Multiply λ2 by λ.
Step 5.5.2.2.1.2.2.1
Raise λ to the power of 1.
p(λ)=2λ2-2λ-(λ2λ1)-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=2λ2-2λ-λ2+1-λ(-λ)-1(-2λ)
p(λ)=2λ2-2λ-λ2+1-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2.3
Add 2 and 1.
p(λ)=2λ2-2λ-λ3-λ(-λ)-1(-2λ)
p(λ)=2λ2-2λ-λ3-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=2λ2-2λ-λ3-1⋅-1λ⋅λ-1(-2λ)
Step 5.5.2.2.1.4
Multiply λ by λ by adding the exponents.
Step 5.5.2.2.1.4.1
Move λ.
p(λ)=2λ2-2λ-λ3-1⋅-1(λ⋅λ)-1(-2λ)
Step 5.5.2.2.1.4.2
Multiply λ by λ.
p(λ)=2λ2-2λ-λ3-1⋅-1λ2-1(-2λ)
p(λ)=2λ2-2λ-λ3-1⋅-1λ2-1(-2λ)
Step 5.5.2.2.1.5
Multiply -1 by -1.
p(λ)=2λ2-2λ-λ3+1λ2-1(-2λ)
Step 5.5.2.2.1.6
Multiply λ2 by 1.
p(λ)=2λ2-2λ-λ3+λ2-1(-2λ)
p(λ)=2λ2-2λ-λ3+λ2-1(-2λ)
Step 5.5.2.2.2
Add 2λ2 and λ2.
p(λ)=3λ2-2λ-λ3-1(-2λ)
p(λ)=3λ2-2λ-λ3-1(-2λ)
Step 5.5.2.3
Multiply -2 by -1.
p(λ)=3λ2-2λ-λ3+2λ
p(λ)=3λ2-2λ-λ3+2λ
Step 5.5.3
Combine the opposite terms in 3λ2-2λ-λ3+2λ.
Step 5.5.3.1
Add -2λ and 2λ.
p(λ)=3λ2-λ3+0
Step 5.5.3.2
Add 3λ2-λ3 and 0.
p(λ)=3λ2-λ3
p(λ)=3λ2-λ3
Step 5.5.4
Reorder 3λ2 and -λ3.
p(λ)=-λ3+3λ2
p(λ)=-λ3+3λ2
p(λ)=-λ3+3λ2
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
-λ3+3λ2=0
Step 7
Step 7.1
Factor -λ2 out of -λ3+3λ2.
Step 7.1.1
Factor -λ2 out of -λ3.
-λ2λ+3λ2=0
Step 7.1.2
Factor -λ2 out of 3λ2.
-λ2λ-λ2⋅-3=0
Step 7.1.3
Factor -λ2 out of -λ2(λ)-λ2(-3).
-λ2(λ-3)=0
-λ2(λ-3)=0
Step 7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
λ2=0
λ-3=0
Step 7.3
Set λ2 equal to 0 and solve for λ.
Step 7.3.1
Set λ2 equal to 0.
λ2=0
Step 7.3.2
Solve λ2=0 for λ.
Step 7.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
λ=±√0
Step 7.3.2.2
Simplify ±√0.
Step 7.3.2.2.1
Rewrite 0 as 02.
λ=±√02
Step 7.3.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
λ=±0
Step 7.3.2.2.3
Plus or minus 0 is 0.
λ=0
λ=0
λ=0
λ=0
Step 7.4
Set λ-3 equal to 0 and solve for λ.
Step 7.4.1
Set λ-3 equal to 0.
λ-3=0
Step 7.4.2
Add 3 to both sides of the equation.
λ=3
λ=3
Step 7.5
The final solution is all the values that make -λ2(λ-3)=0 true.
λ=0,3
λ=0,3