Algebra Examples

[01-16][0116]
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2)
Step 2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2).
Tap for more steps...
Step 3.1
Substitute [01-16][0116] for AA.
p(λ)=determinant([01-16]-λI2)p(λ)=determinant([0116]λI2)
Step 3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([01-16]-λ[1001])p(λ)=determinant([0116]λ[1001])
p(λ)=determinant([01-16]-λ[1001])p(λ)=determinant([0116]λ[1001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λλ by each element of the matrix.
p(λ)=determinant([01-16]+[-λ1-λ0-λ0-λ1])p(λ)=determinant([0116]+[λ1λ0λ0λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -11 by 11.
p(λ)=determinant([01-16]+[-λ-λ0-λ0-λ1])p(λ)=determinant([0116]+[λλ0λ0λ1])
Step 4.1.2.2
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 00 by -11.
p(λ)=determinant([01-16]+[-λ0λ-λ0-λ1])p(λ)=determinant([0116]+[λ0λλ0λ1])
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([01-16]+[-λ0-λ0-λ1])p(λ)=determinant([0116]+[λ0λ0λ1])
p(λ)=determinant([01-16]+[-λ0-λ0-λ1])p(λ)=determinant([0116]+[λ0λ0λ1])
Step 4.1.2.3
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 00 by -11.
p(λ)=determinant([01-16]+[-λ00λ-λ1])p(λ)=determinant([0116]+[λ00λλ1])
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([01-16]+[-λ00-λ1])p(λ)=determinant([0116]+[λ00λ1])
p(λ)=determinant([01-16]+[-λ00-λ1])p(λ)=determinant([0116]+[λ00λ1])
Step 4.1.2.4
Multiply -11 by 11.
p(λ)=determinant([01-16]+[-λ00-λ])p(λ)=determinant([0116]+[λ00λ])
p(λ)=determinant([01-16]+[-λ00-λ])p(λ)=determinant([0116]+[λ00λ])
p(λ)=determinant([01-16]+[-λ00-λ])p(λ)=determinant([0116]+[λ00λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[0-λ1+0-1+06-λ]p(λ)=determinant[0λ1+01+06λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Subtract λλ from 00.
p(λ)=determinant[-λ1+0-1+06-λ]p(λ)=determinant[λ1+01+06λ]
Step 4.3.2
Add 11 and 00.
p(λ)=determinant[-λ1-1+06-λ]p(λ)=determinant[λ11+06λ]
Step 4.3.3
Add -11 and 00.
p(λ)=determinant[-λ1-16-λ]p(λ)=determinant[λ116λ]
p(λ)=determinant[-λ1-16-λ]p(λ)=determinant[λ116λ]
p(λ)=determinant[-λ1-16-λ]p(λ)=determinant[λ116λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
p(λ)=-λ(6-λ)-(-11)p(λ)=λ(6λ)(11)
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Apply the distributive property.
p(λ)=-λ6-λ(-λ)-(-11)p(λ)=λ6λ(λ)(11)
Step 5.2.1.2
Multiply 66 by -11.
p(λ)=-6λ-λ(-λ)-(-11)p(λ)=6λλ(λ)(11)
Step 5.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=-6λ-1-1λλ-(-11)p(λ)=6λ11λλ(11)
Step 5.2.1.4
Simplify each term.
Tap for more steps...
Step 5.2.1.4.1
Multiply λλ by λλ by adding the exponents.
Tap for more steps...
Step 5.2.1.4.1.1
Move λλ.
p(λ)=-6λ-1-1(λλ)-(-11)p(λ)=6λ11(λλ)(11)
Step 5.2.1.4.1.2
Multiply λλ by λλ.
p(λ)=-6λ-1-1λ2-(-11)p(λ)=6λ11λ2(11)
p(λ)=-6λ-1-1λ2-(-11)p(λ)=6λ11λ2(11)
Step 5.2.1.4.2
Multiply -11 by -11.
p(λ)=-6λ+1λ2-(-11)p(λ)=6λ+1λ2(11)
Step 5.2.1.4.3
Multiply λ2λ2 by 11.
p(λ)=-6λ+λ2-(-11)p(λ)=6λ+λ2(11)
p(λ)=-6λ+λ2-(-11)p(λ)=6λ+λ2(11)
Step 5.2.1.5
Multiply -(-11)(11).
Tap for more steps...
Step 5.2.1.5.1
Multiply -11 by 11.
p(λ)=-6λ+λ2--1p(λ)=6λ+λ21
Step 5.2.1.5.2
Multiply -11 by -11.
p(λ)=-6λ+λ2+1p(λ)=6λ+λ2+1
p(λ)=-6λ+λ2+1p(λ)=6λ+λ2+1
p(λ)=-6λ+λ2+1p(λ)=6λ+λ2+1
Step 5.2.2
Reorder -6λ6λ and λ2λ2.
p(λ)=λ2-6λ+1p(λ)=λ26λ+1
p(λ)=λ2-6λ+1p(λ)=λ26λ+1
p(λ)=λ2-6λ+1p(λ)=λ26λ+1
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay