Algebra Examples
[2140]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A−λI2)
Step 2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 3
Step 3.1
Substitute [2140] for A.
p(λ)=determinant([2140]−λI2)
Step 3.2
Substitute [1001] for I2.
p(λ)=determinant([2140]−λ[1001])
p(λ)=determinant([2140]−λ[1001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply −λ by each element of the matrix.
p(λ)=determinant([2140]+[−λ⋅1−λ⋅0−λ⋅0−λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply −1 by 1.
p(λ)=determinant([2140]+[−λ−λ⋅0−λ⋅0−λ⋅1])
Step 4.1.2.2
Multiply −λ⋅0.
Step 4.1.2.2.1
Multiply 0 by −1.
p(λ)=determinant([2140]+[−λ0λ−λ⋅0−λ⋅1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([2140]+[−λ0−λ⋅0−λ⋅1])
p(λ)=determinant([2140]+[−λ0−λ⋅0−λ⋅1])
Step 4.1.2.3
Multiply −λ⋅0.
Step 4.1.2.3.1
Multiply 0 by −1.
p(λ)=determinant([2140]+[−λ00λ−λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([2140]+[−λ00−λ⋅1])
p(λ)=determinant([2140]+[−λ00−λ⋅1])
Step 4.1.2.4
Multiply −1 by 1.
p(λ)=determinant([2140]+[−λ00−λ])
p(λ)=determinant([2140]+[−λ00−λ])
p(λ)=determinant([2140]+[−λ00−λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[2−λ1+04+00−λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 1 and 0.
p(λ)=determinant[2−λ14+00−λ]
Step 4.3.2
Add 4 and 0.
p(λ)=determinant[2−λ140−λ]
Step 4.3.3
Subtract λ from 0.
p(λ)=determinant[2−λ14−λ]
p(λ)=determinant[2−λ14−λ]
p(λ)=determinant[2−λ14−λ]
Step 5
Step 5.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
p(λ)=(2−λ)(−λ)−4⋅1
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Apply the distributive property.
p(λ)=2(−λ)−λ(−λ)−4⋅1
Step 5.2.1.2
Multiply −1 by 2.
p(λ)=−2λ−λ(−λ)−4⋅1
Step 5.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=−2λ−1⋅−1λ⋅λ−4⋅1
Step 5.2.1.4
Simplify each term.
Step 5.2.1.4.1
Multiply λ by λ by adding the exponents.
Step 5.2.1.4.1.1
Move λ.
p(λ)=−2λ−1⋅−1(λ⋅λ)−4⋅1
Step 5.2.1.4.1.2
Multiply λ by λ.
p(λ)=−2λ−1⋅−1λ2−4⋅1
p(λ)=−2λ−1⋅−1λ2−4⋅1
Step 5.2.1.4.2
Multiply −1 by −1.
p(λ)=−2λ+1λ2−4⋅1
Step 5.2.1.4.3
Multiply λ2 by 1.
p(λ)=−2λ+λ2−4⋅1
p(λ)=−2λ+λ2−4⋅1
Step 5.2.1.5
Multiply −4 by 1.
p(λ)=−2λ+λ2−4
p(λ)=−2λ+λ2−4
Step 5.2.2
Reorder −2λ and λ2.
p(λ)=λ2−2λ−4
p(λ)=λ2−2λ−4
p(λ)=λ2−2λ−4