Algebra Examples

[2140]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(AλI2)
Step 2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 3
Substitute the known values into p(λ)=determinant(AλI2).
Tap for more steps...
Step 3.1
Substitute [2140] for A.
p(λ)=determinant([2140]λI2)
Step 3.2
Substitute [1001] for I2.
p(λ)=determinant([2140]λ[1001])
p(λ)=determinant([2140]λ[1001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply λ by each element of the matrix.
p(λ)=determinant([2140]+[λ1λ0λ0λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply 1 by 1.
p(λ)=determinant([2140]+[λλ0λ0λ1])
Step 4.1.2.2
Multiply λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 0 by 1.
p(λ)=determinant([2140]+[λ0λλ0λ1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([2140]+[λ0λ0λ1])
p(λ)=determinant([2140]+[λ0λ0λ1])
Step 4.1.2.3
Multiply λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 0 by 1.
p(λ)=determinant([2140]+[λ00λλ1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([2140]+[λ00λ1])
p(λ)=determinant([2140]+[λ00λ1])
Step 4.1.2.4
Multiply 1 by 1.
p(λ)=determinant([2140]+[λ00λ])
p(λ)=determinant([2140]+[λ00λ])
p(λ)=determinant([2140]+[λ00λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[2λ1+04+00λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 1 and 0.
p(λ)=determinant[2λ14+00λ]
Step 4.3.2
Add 4 and 0.
p(λ)=determinant[2λ140λ]
Step 4.3.3
Subtract λ from 0.
p(λ)=determinant[2λ14λ]
p(λ)=determinant[2λ14λ]
p(λ)=determinant[2λ14λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
p(λ)=(2λ)(λ)41
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Apply the distributive property.
p(λ)=2(λ)λ(λ)41
Step 5.2.1.2
Multiply 1 by 2.
p(λ)=2λλ(λ)41
Step 5.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=2λ11λλ41
Step 5.2.1.4
Simplify each term.
Tap for more steps...
Step 5.2.1.4.1
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.2.1.4.1.1
Move λ.
p(λ)=2λ11(λλ)41
Step 5.2.1.4.1.2
Multiply λ by λ.
p(λ)=2λ11λ241
p(λ)=2λ11λ241
Step 5.2.1.4.2
Multiply 1 by 1.
p(λ)=2λ+1λ241
Step 5.2.1.4.3
Multiply λ2 by 1.
p(λ)=2λ+λ241
p(λ)=2λ+λ241
Step 5.2.1.5
Multiply 4 by 1.
p(λ)=2λ+λ24
p(λ)=2λ+λ24
Step 5.2.2
Reorder 2λ and λ2.
p(λ)=λ22λ4
p(λ)=λ22λ4
p(λ)=λ22λ4
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 x2  12  π  xdx  
AmazonPay