Algebra Examples
f(x)=2x2+16x-1f(x)=2x2+16x−1
Step 1
Write f(x)=2x2+16x-1f(x)=2x2+16x−1 as an equation.
y=2x2+16x-1y=2x2+16x−1
Step 2
Step 2.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=2a=2
b=16b=16
c=-1c=−1
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 2.3
Find the value of dd using the formula d=b2ad=b2a.
Step 2.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=162⋅2d=162⋅2
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Cancel the common factor of 1616 and 22.
Step 2.3.2.1.1
Factor 22 out of 1616.
d=2⋅82⋅2d=2⋅82⋅2
Step 2.3.2.1.2
Cancel the common factors.
Step 2.3.2.1.2.1
Factor 22 out of 2⋅22⋅2.
d=2⋅82(2)d=2⋅82(2)
Step 2.3.2.1.2.2
Cancel the common factor.
d=2⋅82⋅2
Step 2.3.2.1.2.3
Rewrite the expression.
d=82
d=82
d=82
Step 2.3.2.2
Cancel the common factor of 8 and 2.
Step 2.3.2.2.1
Factor 2 out of 8.
d=2⋅42
Step 2.3.2.2.2
Cancel the common factors.
Step 2.3.2.2.2.1
Factor 2 out of 2.
d=2⋅42(1)
Step 2.3.2.2.2.2
Cancel the common factor.
d=2⋅42⋅1
Step 2.3.2.2.2.3
Rewrite the expression.
d=41
Step 2.3.2.2.2.4
Divide 4 by 1.
d=4
d=4
d=4
d=4
d=4
Step 2.4
Find the value of e using the formula e=c-b24a.
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-1-1624⋅2
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify each term.
Step 2.4.2.1.1
Raise 16 to the power of 2.
e=-1-2564⋅2
Step 2.4.2.1.2
Multiply 4 by 2.
e=-1-2568
Step 2.4.2.1.3
Divide 256 by 8.
e=-1-1⋅32
Step 2.4.2.1.4
Multiply -1 by 32.
e=-1-32
e=-1-32
Step 2.4.2.2
Subtract 32 from -1.
e=-33
e=-33
e=-33
Step 2.5
Substitute the values of a, d, and e into the vertex form 2(x+4)2-33.
2(x+4)2-33
2(x+4)2-33
Step 3
Set y equal to the new right side.
y=2(x+4)2-33