Algebra Examples
2y-4x+x2+y2=3
Step 1
Step 1.1
Reorder 2y and y2.
y2+2y
Step 1.2
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=2
c=0
Step 1.3
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.4
Find the value of d using the formula d=b2a.
Step 1.4.1
Substitute the values of a and b into the formula d=b2a.
d=22⋅1
Step 1.4.2
Cancel the common factor of 2.
Step 1.4.2.1
Cancel the common factor.
d=22⋅1
Step 1.4.2.2
Rewrite the expression.
d=1
d=1
d=1
Step 1.5
Find the value of e using the formula e=c-b24a.
Step 1.5.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-224⋅1
Step 1.5.2
Simplify the right side.
Step 1.5.2.1
Simplify each term.
Step 1.5.2.1.1
Raise 2 to the power of 2.
e=0-44⋅1
Step 1.5.2.1.2
Multiply 4 by 1.
e=0-44
Step 1.5.2.1.3
Cancel the common factor of 4.
Step 1.5.2.1.3.1
Cancel the common factor.
e=0-44
Step 1.5.2.1.3.2
Rewrite the expression.
e=0-1⋅1
e=0-1⋅1
Step 1.5.2.1.4
Multiply -1 by 1.
e=0-1
e=0-1
Step 1.5.2.2
Subtract 1 from 0.
e=-1
e=-1
e=-1
Step 1.6
Substitute the values of a, d, and e into the vertex form (y+1)2-1.
(y+1)2-1
(y+1)2-1
Step 2
Substitute (y+1)2-1 for 2y+y2 in the equation 2y-4x+x2+y2=3.
(y+1)2-1-4x+x2=3
Step 3
Move -1 to the right side of the equation by adding 1 to both sides.
(y+1)2-4x+x2=3+1
Step 4
Step 4.1
Reorder -4x and x2.
x2-4x
Step 4.2
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=-4
c=0
Step 4.3
Consider the vertex form of a parabola.
a(x+d)2+e
Step 4.4
Find the value of d using the formula d=b2a.
Step 4.4.1
Substitute the values of a and b into the formula d=b2a.
d=-42⋅1
Step 4.4.2
Cancel the common factor of -4 and 2.
Step 4.4.2.1
Factor 2 out of -4.
d=2⋅-22⋅1
Step 4.4.2.2
Cancel the common factors.
Step 4.4.2.2.1
Factor 2 out of 2⋅1.
d=2⋅-22(1)
Step 4.4.2.2.2
Cancel the common factor.
d=2⋅-22⋅1
Step 4.4.2.2.3
Rewrite the expression.
d=-21
Step 4.4.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
Step 4.5
Find the value of e using the formula e=c-b24a.
Step 4.5.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-4)24⋅1
Step 4.5.2
Simplify the right side.
Step 4.5.2.1
Simplify each term.
Step 4.5.2.1.1
Cancel the common factor of (-4)2 and 4.
Step 4.5.2.1.1.1
Rewrite -4 as -1(4).
e=0-(-1(4))24⋅1
Step 4.5.2.1.1.2
Apply the product rule to -1(4).
e=0-(-1)2⋅424⋅1
Step 4.5.2.1.1.3
Raise -1 to the power of 2.
e=0-1⋅424⋅1
Step 4.5.2.1.1.4
Multiply 42 by 1.
e=0-424⋅1
Step 4.5.2.1.1.5
Factor 4 out of 42.
e=0-4⋅44⋅1
Step 4.5.2.1.1.6
Cancel the common factors.
Step 4.5.2.1.1.6.1
Factor 4 out of 4⋅1.
e=0-4⋅44(1)
Step 4.5.2.1.1.6.2
Cancel the common factor.
e=0-4⋅44⋅1
Step 4.5.2.1.1.6.3
Rewrite the expression.
e=0-41
Step 4.5.2.1.1.6.4
Divide 4 by 1.
e=0-1⋅4
e=0-1⋅4
e=0-1⋅4
Step 4.5.2.1.2
Multiply -1 by 4.
e=0-4
e=0-4
Step 4.5.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 4.6
Substitute the values of a, d, and e into the vertex form (x-2)2-4.
(x-2)2-4
(x-2)2-4
Step 5
Substitute (x-2)2-4 for -4x+x2 in the equation 2y-4x+x2+y2=3.
(y+1)2+(x-2)2-4=3+1
Step 6
Move -4 to the right side of the equation by adding 4 to both sides.
(y+1)2+(x-2)2=3+1+4
Step 7
Step 7.1
Add 3 and 1.
(y+1)2+(x-2)2=4+4
Step 7.2
Add 4 and 4.
(y+1)2+(x-2)2=8
(y+1)2+(x-2)2=8