Algebra Examples
4x2+4y2-16x-24y+48=04x2+4y2−16x−24y+48=0
Step 1
Subtract 4848 from both sides of the equation.
4x2+4y2-16x-24y=-484x2+4y2−16x−24y=−48
Step 2
Divide both sides of the equation by 44.
x2+y2-4x-6y=-12x2+y2−4x−6y=−12
Step 3
Step 3.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-4b=−4
c=0c=0
Step 3.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 3.3
Find the value of dd using the formula d=b2ad=b2a.
Step 3.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-42⋅1d=−42⋅1
Step 3.3.2
Cancel the common factor of -4−4 and 22.
Step 3.3.2.1
Factor 22 out of -4−4.
d=2⋅-22⋅1d=2⋅−22⋅1
Step 3.3.2.2
Cancel the common factors.
Step 3.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅-22(1)d=2⋅−22(1)
Step 3.3.2.2.2
Cancel the common factor.
d=2⋅-22⋅1
Step 3.3.2.2.3
Rewrite the expression.
d=-21
Step 3.3.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
Step 3.4
Find the value of e using the formula e=c-b24a.
Step 3.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-4)24⋅1
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify each term.
Step 3.4.2.1.1
Cancel the common factor of (-4)2 and 4.
Step 3.4.2.1.1.1
Rewrite -4 as -1(4).
e=0-(-1(4))24⋅1
Step 3.4.2.1.1.2
Apply the product rule to -1(4).
e=0-(-1)2⋅424⋅1
Step 3.4.2.1.1.3
Raise -1 to the power of 2.
e=0-1⋅424⋅1
Step 3.4.2.1.1.4
Multiply 42 by 1.
e=0-424⋅1
Step 3.4.2.1.1.5
Factor 4 out of 42.
e=0-4⋅44⋅1
Step 3.4.2.1.1.6
Cancel the common factors.
Step 3.4.2.1.1.6.1
Factor 4 out of 4⋅1.
e=0-4⋅44(1)
Step 3.4.2.1.1.6.2
Cancel the common factor.
e=0-4⋅44⋅1
Step 3.4.2.1.1.6.3
Rewrite the expression.
e=0-41
Step 3.4.2.1.1.6.4
Divide 4 by 1.
e=0-1⋅4
e=0-1⋅4
e=0-1⋅4
Step 3.4.2.1.2
Multiply -1 by 4.
e=0-4
e=0-4
Step 3.4.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 3.5
Substitute the values of a, d, and e into the vertex form (x-2)2-4.
(x-2)2-4
(x-2)2-4
Step 4
Substitute (x-2)2-4 for x2-4x in the equation x2+y2-4x-6y=-12.
(x-2)2-4+y2-6y=-12
Step 5
Move -4 to the right side of the equation by adding 4 to both sides.
(x-2)2+y2-6y=-12+4
Step 6
Step 6.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=-6
c=0
Step 6.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 6.3
Find the value of d using the formula d=b2a.
Step 6.3.1
Substitute the values of a and b into the formula d=b2a.
d=-62⋅1
Step 6.3.2
Cancel the common factor of -6 and 2.
Step 6.3.2.1
Factor 2 out of -6.
d=2⋅-32⋅1
Step 6.3.2.2
Cancel the common factors.
Step 6.3.2.2.1
Factor 2 out of 2⋅1.
d=2⋅-32(1)
Step 6.3.2.2.2
Cancel the common factor.
d=2⋅-32⋅1
Step 6.3.2.2.3
Rewrite the expression.
d=-31
Step 6.3.2.2.4
Divide -3 by 1.
d=-3
d=-3
d=-3
d=-3
Step 6.4
Find the value of e using the formula e=c-b24a.
Step 6.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-6)24⋅1
Step 6.4.2
Simplify the right side.
Step 6.4.2.1
Simplify each term.
Step 6.4.2.1.1
Raise -6 to the power of 2.
e=0-364⋅1
Step 6.4.2.1.2
Multiply 4 by 1.
e=0-364
Step 6.4.2.1.3
Divide 36 by 4.
e=0-1⋅9
Step 6.4.2.1.4
Multiply -1 by 9.
e=0-9
e=0-9
Step 6.4.2.2
Subtract 9 from 0.
e=-9
e=-9
e=-9
Step 6.5
Substitute the values of a, d, and e into the vertex form (y-3)2-9.
(y-3)2-9
(y-3)2-9
Step 7
Substitute (y-3)2-9 for y2-6y in the equation x2+y2-4x-6y=-12.
(x-2)2+(y-3)2-9=-12+4
Step 8
Move -9 to the right side of the equation by adding 9 to both sides.
(x-2)2+(y-3)2=-12+4+9
Step 9
Step 9.1
Add -12 and 4.
(x-2)2+(y-3)2=-8+9
Step 9.2
Add -8 and 9.
(x-2)2+(y-3)2=1
(x-2)2+(y-3)2=1