Algebra Examples

y=-x2+3x+13y=x2+3x+13
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Complete the square for -x2+3x+13x2+3x+13.
Tap for more steps...
Step 1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=-1a=1
b=3b=3
c=13c=13
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=32-1d=321
Step 1.1.3.2
Simplify the right side.
Tap for more steps...
Step 1.1.3.2.1
Multiply 22 by -11.
d=3-2d=32
Step 1.1.3.2.2
Move the negative in front of the fraction.
d=-32d=32
d=-32d=32
d=-32d=32
Step 1.1.4
Find the value of ee using the formula e=c-b24ae=cb24a.
Tap for more steps...
Step 1.1.4.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=cb24a.
e=13-324-1e=133241
Step 1.1.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.1.4.2.1.1
Raise 33 to the power of 22.
e=13-94-1e=13941
Step 1.1.4.2.1.2
Multiply 44 by -11.
e=13-9-4e=1394
Step 1.1.4.2.1.3
Move the negative in front of the fraction.
e=13--94e=1394
Step 1.1.4.2.1.4
Multiply --9494.
Tap for more steps...
Step 1.1.4.2.1.4.1
Multiply -11 by -11.
e=13+1(94)e=13+1(94)
Step 1.1.4.2.1.4.2
Multiply 9494 by 11.
e=13+94e=13+94
e=13+94e=13+94
e=13+94e=13+94
Step 1.1.4.2.2
To write 1313 as a fraction with a common denominator, multiply by 4444.
e=1344+94e=1344+94
Step 1.1.4.2.3
Combine 1313 and 4444.
e=1344+94e=1344+94
Step 1.1.4.2.4
Combine the numerators over the common denominator.
e=134+94e=134+94
Step 1.1.4.2.5
Simplify the numerator.
Tap for more steps...
Step 1.1.4.2.5.1
Multiply 1313 by 44.
e=52+94e=52+94
Step 1.1.4.2.5.2
Add 5252 and 99.
e=614e=614
e=614e=614
e=614e=614
e=614e=614
Step 1.1.5
Substitute the values of aa, dd, and ee into the vertex form -(x-32)2+614(x32)2+614.
-(x-32)2+614(x32)2+614
-(x-32)2+614(x32)2+614
Step 1.2
Set yy equal to the new right side.
y=-(x-32)2+614y=(x32)2+614
y=-(x-32)2+614y=(x32)2+614
Step 2
Use the vertex form, y=a(x-h)2+ky=a(xh)2+k, to determine the values of aa, hh, and kk.
a=-1a=1
h=32h=32
k=614k=614
Step 3
Find the vertex (h,k)(h,k).
(32,614)(32,614)
Step 4
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay