Algebra Examples
y=-x2+3x+13y=−x2+3x+13
Step 1
Step 1.1
Complete the square for -x2+3x+13−x2+3x+13.
Step 1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=-1a=−1
b=3b=3
c=13c=13
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=32⋅-1d=32⋅−1
Step 1.1.3.2
Simplify the right side.
Step 1.1.3.2.1
Multiply 22 by -1−1.
d=3-2d=3−2
Step 1.1.3.2.2
Move the negative in front of the fraction.
d=-32d=−32
d=-32d=−32
d=-32d=−32
Step 1.1.4
Find the value of ee using the formula e=c-b24ae=c−b24a.
Step 1.1.4.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=c−b24a.
e=13-324⋅-1e=13−324⋅−1
Step 1.1.4.2
Simplify the right side.
Step 1.1.4.2.1
Simplify each term.
Step 1.1.4.2.1.1
Raise 33 to the power of 22.
e=13-94⋅-1e=13−94⋅−1
Step 1.1.4.2.1.2
Multiply 44 by -1−1.
e=13-9-4e=13−9−4
Step 1.1.4.2.1.3
Move the negative in front of the fraction.
e=13--94e=13−−94
Step 1.1.4.2.1.4
Multiply --94−−94.
Step 1.1.4.2.1.4.1
Multiply -1−1 by -1−1.
e=13+1(94)e=13+1(94)
Step 1.1.4.2.1.4.2
Multiply 9494 by 11.
e=13+94e=13+94
e=13+94e=13+94
e=13+94e=13+94
Step 1.1.4.2.2
To write 1313 as a fraction with a common denominator, multiply by 4444.
e=13⋅44+94e=13⋅44+94
Step 1.1.4.2.3
Combine 1313 and 4444.
e=13⋅44+94e=13⋅44+94
Step 1.1.4.2.4
Combine the numerators over the common denominator.
e=13⋅4+94e=13⋅4+94
Step 1.1.4.2.5
Simplify the numerator.
Step 1.1.4.2.5.1
Multiply 1313 by 44.
e=52+94e=52+94
Step 1.1.4.2.5.2
Add 5252 and 99.
e=614e=614
e=614e=614
e=614e=614
e=614e=614
Step 1.1.5
Substitute the values of aa, dd, and ee into the vertex form -(x-32)2+614−(x−32)2+614.
-(x-32)2+614−(x−32)2+614
-(x-32)2+614−(x−32)2+614
Step 1.2
Set yy equal to the new right side.
y=-(x-32)2+614y=−(x−32)2+614
y=-(x-32)2+614y=−(x−32)2+614
Step 2
Use the vertex form, y=a(x-h)2+ky=a(x−h)2+k, to determine the values of aa, hh, and kk.
a=-1a=−1
h=32h=32
k=614k=614
Step 3
Find the vertex (h,k)(h,k).
(32,614)(32,614)
Step 4