Algebra Examples
(2x-5)2-(5y-4)2=4(2x−5)2−(5y−4)2=4
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Rewrite (2x-5)2(2x−5)2 as (2x-5)(2x-5)(2x−5)(2x−5).
(2x-5)(2x-5)-(5y-4)2=4(2x−5)(2x−5)−(5y−4)2=4
Step 1.1.2
Expand (2x-5)(2x-5)(2x−5)(2x−5) using the FOIL Method.
Step 1.1.2.1
Apply the distributive property.
2x(2x-5)-5(2x-5)-(5y-4)2=42x(2x−5)−5(2x−5)−(5y−4)2=4
Step 1.1.2.2
Apply the distributive property.
2x(2x)+2x⋅-5-5(2x-5)-(5y-4)2=42x(2x)+2x⋅−5−5(2x−5)−(5y−4)2=4
Step 1.1.2.3
Apply the distributive property.
2x(2x)+2x⋅-5-5(2x)-5⋅-5-(5y-4)2=42x(2x)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
2x(2x)+2x⋅-5-5(2x)-5⋅-5-(5y-4)2=42x(2x)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3
Simplify and combine like terms.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Rewrite using the commutative property of multiplication.
2⋅(2x⋅x)+2x⋅-5-5(2x)-5⋅-5-(5y-4)2=42⋅(2x⋅x)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.2
Multiply xx by xx by adding the exponents.
Step 1.1.3.1.2.1
Move xx.
2⋅(2(x⋅x))+2x⋅-5-5(2x)-5⋅-5-(5y-4)2=42⋅(2(x⋅x))+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.2.2
Multiply xx by xx.
2⋅(2x2)+2x⋅-5-5(2x)-5⋅-5-(5y-4)2=42⋅(2x2)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
2⋅(2x2)+2x⋅-5-5(2x)-5⋅-5-(5y-4)2=42⋅(2x2)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.3
Multiply 22 by 22.
4x2+2x⋅-5-5(2x)-5⋅-5-(5y-4)2=44x2+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.4
Multiply -5−5 by 22.
4x2-10x-5(2x)-5⋅-5-(5y-4)2=44x2−10x−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.5
Multiply 22 by -5−5.
4x2-10x-10x-5⋅-5-(5y-4)2=44x2−10x−10x−5⋅−5−(5y−4)2=4
Step 1.1.3.1.6
Multiply -5−5 by -5−5.
4x2-10x-10x+25-(5y-4)2=44x2−10x−10x+25−(5y−4)2=4
4x2-10x-10x+25-(5y-4)2=44x2−10x−10x+25−(5y−4)2=4
Step 1.1.3.2
Subtract 10x10x from -10x−10x.
4x2-20x+25-(5y-4)2=44x2−20x+25−(5y−4)2=4
4x2-20x+25-(5y-4)2=44x2−20x+25−(5y−4)2=4
Step 1.1.4
Rewrite (5y-4)2(5y−4)2 as (5y-4)(5y-4)(5y−4)(5y−4).
4x2-20x+25-((5y-4)(5y-4))=44x2−20x+25−((5y−4)(5y−4))=4
Step 1.1.5
Expand (5y-4)(5y-4)(5y−4)(5y−4) using the FOIL Method.
Step 1.1.5.1
Apply the distributive property.
4x2-20x+25-(5y(5y-4)-4(5y-4))=44x2−20x+25−(5y(5y−4)−4(5y−4))=4
Step 1.1.5.2
Apply the distributive property.
4x2-20x+25-(5y(5y)+5y⋅-4-4(5y-4))=44x2−20x+25−(5y(5y)+5y⋅−4−4(5y−4))=4
Step 1.1.5.3
Apply the distributive property.
4x2-20x+25-(5y(5y)+5y⋅-4-4(5y)-4⋅-4)=44x2−20x+25−(5y(5y)+5y⋅−4−4(5y)−4⋅−4)=4
4x2-20x+25-(5y(5y)+5y⋅-4-4(5y)-4⋅-4)=44x2−20x+25−(5y(5y)+5y⋅−4−4(5y)−4⋅−4)=4
Step 1.1.6
Simplify and combine like terms.
Step 1.1.6.1
Simplify each term.
Step 1.1.6.1.1
Rewrite using the commutative property of multiplication.
4x2-20x+25-(5⋅(5y⋅y)+5y⋅-4-4(5y)-4⋅-4)=44x2−20x+25−(5⋅(5y⋅y)+5y⋅−4−4(5y)−4⋅−4)=4
Step 1.1.6.1.2
Multiply yy by yy by adding the exponents.
Step 1.1.6.1.2.1
Move yy.
4x2-20x+25-(5⋅(5(y⋅y))+5y⋅-4-4(5y)-4⋅-4)=44x2−20x+25−(5⋅(5(y⋅y))+5y⋅−4−4(5y)−4⋅−4)=4
Step 1.1.6.1.2.2
Multiply yy by yy.
4x2-20x+25-(5⋅(5y2)+5y⋅-4-4(5y)-4⋅-4)=44x2−20x+25−(5⋅(5y2)+5y⋅−4−4(5y)−4⋅−4)=4
4x2-20x+25-(5⋅(5y2)+5y⋅-4-4(5y)-4⋅-4)=44x2−20x+25−(5⋅(5y2)+5y⋅−4−4(5y)−4⋅−4)=4
Step 1.1.6.1.3
Multiply 5 by 5.
4x2-20x+25-(25y2+5y⋅-4-4(5y)-4⋅-4)=4
Step 1.1.6.1.4
Multiply -4 by 5.
4x2-20x+25-(25y2-20y-4(5y)-4⋅-4)=4
Step 1.1.6.1.5
Multiply 5 by -4.
4x2-20x+25-(25y2-20y-20y-4⋅-4)=4
Step 1.1.6.1.6
Multiply -4 by -4.
4x2-20x+25-(25y2-20y-20y+16)=4
4x2-20x+25-(25y2-20y-20y+16)=4
Step 1.1.6.2
Subtract 20y from -20y.
4x2-20x+25-(25y2-40y+16)=4
4x2-20x+25-(25y2-40y+16)=4
Step 1.1.7
Apply the distributive property.
4x2-20x+25-(25y2)-(-40y)-1⋅16=4
Step 1.1.8
Simplify.
Step 1.1.8.1
Multiply 25 by -1.
4x2-20x+25-25y2-(-40y)-1⋅16=4
Step 1.1.8.2
Multiply -40 by -1.
4x2-20x+25-25y2+40y-1⋅16=4
Step 1.1.8.3
Multiply -1 by 16.
4x2-20x+25-25y2+40y-16=4
4x2-20x+25-25y2+40y-16=4
4x2-20x+25-25y2+40y-16=4
Step 1.2
Simplify the expression.
Step 1.2.1
Subtract 16 from 25.
4x2-20x-25y2+40y+9=4
Step 1.2.2
Move -20x.
4x2-25y2-20x+40y+9=4
4x2-25y2-20x+40y+9=4
4x2-25y2-20x+40y+9=4
Step 2
Step 2.1
Subtract 4 from both sides of the equation.
4x2-25y2-20x+40y+9-4=0
Step 2.2
Subtract 4 from 9.
4x2-25y2-20x+40y+5=0
4x2-25y2-20x+40y+5=0