Algebra Examples

Find the Circle Using the Diameter End Points
(-1,-1)(1,1) , (1,2)(1,2)
Step 1
The diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints are on the circumference of the circle. The given end points of the diameter are (-1,-1)(1,1) and (1,2)(1,2). The center point of the circle is the center of the diameter, which is the midpoint between (-1,-1)(1,1) and (1,2)(1,2). In this case the midpoint is (0,12)(0,12).
Tap for more steps...
Step 1.1
Use the midpoint formula to find the midpoint of the line segment.
(x1+x22,y1+y22)(x1+x22,y1+y22)
Step 1.2
Substitute in the values for (x1,y1)(x1,y1) and (x2,y2)(x2,y2).
(-1+12,-1+22)(1+12,1+22)
Step 1.3
Add -11 and 11.
(02,-1+22)(02,1+22)
Step 1.4
Divide 00 by 22.
(0,-1+22)(0,1+22)
Step 1.5
Add -11 and 22.
(0,12)(0,12)
(0,12)(0,12)
Step 2
Find the radius rr for the circle. The radius is any line segment from the center of the circle to any point on its circumference. In this case, rr is the distance between (0,12)(0,12) and (-1,-1)(1,1).
Tap for more steps...
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=(x2-x1)2+(y2-y1)2Distance=(x2x1)2+(y2y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
r=((-1)-0)2+((-1)-12)2r=((1)0)2+((1)12)2
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Subtract 00 from -11.
r=(-1)2+((-1)-12)2r=(1)2+((1)12)2
Step 2.3.2
Raise -11 to the power of 22.
r=1+((-1)-12)2r=1+((1)12)2
Step 2.3.3
To write -11 as a fraction with a common denominator, multiply by 2222.
r=1+(-122-12)2r=1+(12212)2
Step 2.3.4
Combine -11 and 2222.
r=1+(-122-12)2r=1+(12212)2
Step 2.3.5
Combine the numerators over the common denominator.
r=1+(-12-12)2r=1+(1212)2
Step 2.3.6
Simplify the numerator.
Tap for more steps...
Step 2.3.6.1
Multiply -11 by 22.
r=1+(-2-12)2r=1+(212)2
Step 2.3.6.2
Subtract 11 from -22.
r=1+(-32)2r=1+(32)2
r=1+(-32)2r=1+(32)2
Step 2.3.7
Move the negative in front of the fraction.
r=1+(-32)2r=1+(32)2
Step 2.3.8
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.3.8.1
Apply the product rule to -3232.
r=1+(-1)2(32)2r=1+(1)2(32)2
Step 2.3.8.2
Apply the product rule to 3232.
r=1+(-1)2(3222)r=1+(1)2(3222)
r=1+(-1)2(3222)r=1+(1)2(3222)
Step 2.3.9
Raise -11 to the power of 22.
r=1+1(3222)r=1+1(3222)
Step 2.3.10
Multiply 32223222 by 11.
r=1+3222r=1+3222
Step 2.3.11
Raise 33 to the power of 22.
r=1+922r=1+922
Step 2.3.12
Raise 22 to the power of 22.
r=1+94r=1+94
Step 2.3.13
Write 11 as a fraction with a common denominator.
r=44+94r=44+94
Step 2.3.14
Combine the numerators over the common denominator.
r=4+94r=4+94
Step 2.3.15
Add 44 and 99.
r=134r=134
Step 2.3.16
Rewrite 134134 as 134134.
r=134r=134
Step 2.3.17
Simplify the denominator.
Tap for more steps...
Step 2.3.17.1
Rewrite 44 as 2222.
r=1322r=1322
Step 2.3.17.2
Pull terms out from under the radical, assuming positive real numbers.
r=132r=132
r=132r=132
r=132r=132
r=132r=132
Step 3
(x-h)2+(y-k)2=r2(xh)2+(yk)2=r2 is the equation form for a circle with rr radius and (h,k)(h,k) as the center point. In this case, r=132r=132 and the center point is (0,12)(0,12). The equation for the circle is (x-(0))2+(y-(12))2=(132)2(x(0))2+(y(12))2=(132)2.
(x-(0))2+(y-(12))2=(132)2(x(0))2+(y(12))2=(132)2
Step 4
The circle equation is (x-0)2+(y-12)2=134(x0)2+(y12)2=134.
(x-0)2+(y-12)2=134(x0)2+(y12)2=134
Step 5
Simplify the circle equation.
x2+(y-12)2=134x2+(y12)2=134
Step 6
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay