Algebra Examples
(-1,-1)(−1,−1) , (1,2)(1,2)
Step 1
Step 1.1
Use the midpoint formula to find the midpoint of the line segment.
(x1+x22,y1+y22)(x1+x22,y1+y22)
Step 1.2
Substitute in the values for (x1,y1)(x1,y1) and (x2,y2)(x2,y2).
(-1+12,-1+22)(−1+12,−1+22)
Step 1.3
Add -1−1 and 11.
(02,-1+22)(02,−1+22)
Step 1.4
Divide 00 by 22.
(0,-1+22)(0,−1+22)
Step 1.5
Add -1−1 and 22.
(0,12)(0,12)
(0,12)(0,12)
Step 2
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2Distance=√(x2−x1)2+(y2−y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
r=√((-1)-0)2+((-1)-12)2r=√((−1)−0)2+((−1)−12)2
Step 2.3
Simplify.
Step 2.3.1
Subtract 00 from -1−1.
r=√(-1)2+((-1)-12)2r=√(−1)2+((−1)−12)2
Step 2.3.2
Raise -1−1 to the power of 22.
r=√1+((-1)-12)2r=√1+((−1)−12)2
Step 2.3.3
To write -1−1 as a fraction with a common denominator, multiply by 2222.
r=√1+(-1⋅22-12)2r=√1+(−1⋅22−12)2
Step 2.3.4
Combine -1−1 and 2222.
r=√1+(-1⋅22-12)2r=√1+(−1⋅22−12)2
Step 2.3.5
Combine the numerators over the common denominator.
r=√1+(-1⋅2-12)2r=√1+(−1⋅2−12)2
Step 2.3.6
Simplify the numerator.
Step 2.3.6.1
Multiply -1−1 by 22.
r=√1+(-2-12)2r=√1+(−2−12)2
Step 2.3.6.2
Subtract 11 from -2−2.
r=√1+(-32)2r=√1+(−32)2
r=√1+(-32)2r=√1+(−32)2
Step 2.3.7
Move the negative in front of the fraction.
r=√1+(-32)2r=√1+(−32)2
Step 2.3.8
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.3.8.1
Apply the product rule to -32−32.
r=√1+(-1)2(32)2r=√1+(−1)2(32)2
Step 2.3.8.2
Apply the product rule to 3232.
r=√1+(-1)2(3222)r=√1+(−1)2(3222)
r=√1+(-1)2(3222)r=√1+(−1)2(3222)
Step 2.3.9
Raise -1−1 to the power of 22.
r=√1+1(3222)r=√1+1(3222)
Step 2.3.10
Multiply 32223222 by 11.
r=√1+3222r=√1+3222
Step 2.3.11
Raise 33 to the power of 22.
r=√1+922r=√1+922
Step 2.3.12
Raise 22 to the power of 22.
r=√1+94r=√1+94
Step 2.3.13
Write 11 as a fraction with a common denominator.
r=√44+94r=√44+94
Step 2.3.14
Combine the numerators over the common denominator.
r=√4+94r=√4+94
Step 2.3.15
Add 44 and 99.
r=√134r=√134
Step 2.3.16
Rewrite √134√134 as √13√4√13√4.
r=√13√4r=√13√4
Step 2.3.17
Simplify the denominator.
Step 2.3.17.1
Rewrite 44 as 2222.
r=√13√22r=√13√22
Step 2.3.17.2
Pull terms out from under the radical, assuming positive real numbers.
r=√132r=√132
r=√132r=√132
r=√132r=√132
r=√132r=√132
Step 3
(x-h)2+(y-k)2=r2(x−h)2+(y−k)2=r2 is the equation form for a circle with rr radius and (h,k)(h,k) as the center point. In this case, r=√132r=√132 and the center point is (0,12)(0,12). The equation for the circle is (x-(0))2+(y-(12))2=(√132)2(x−(0))2+(y−(12))2=(√132)2.
(x-(0))2+(y-(12))2=(√132)2(x−(0))2+(y−(12))2=(√132)2
Step 4
The circle equation is (x-0)2+(y-12)2=134(x−0)2+(y−12)2=134.
(x-0)2+(y-12)2=134(x−0)2+(y−12)2=134
Step 5
Simplify the circle equation.
x2+(y-12)2=134x2+(y−12)2=134
Step 6