Algebra Examples
(1,1)(1,1) , (1,2)(1,2)
Step 1
Step 1.1
Use the midpoint formula to find the midpoint of the line segment.
(x1+x22,y1+y22)(x1+x22,y1+y22)
Step 1.2
Substitute in the values for (x1,y1)(x1,y1) and (x2,y2)(x2,y2).
(1+12,1+22)(1+12,1+22)
Step 1.3
Add 11 and 11.
(22,1+22)(22,1+22)
Step 1.4
Divide 22 by 22.
(1,1+22)(1,1+22)
Step 1.5
Add 11 and 22.
(1,32)(1,32)
(1,32)(1,32)
Step 2
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2Distance=√(x2−x1)2+(y2−y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
r=√(1-1)2+(1-32)2r=√(1−1)2+(1−32)2
Step 2.3
Simplify.
Step 2.3.1
Subtract 11 from 11.
r=√02+(1-32)2r=√02+(1−32)2
Step 2.3.2
Raising 00 to any positive power yields 00.
r=√0+(1-32)2r=√0+(1−32)2
Step 2.3.3
Write 11 as a fraction with a common denominator.
r=√0+(22-32)2r=√0+(22−32)2
Step 2.3.4
Combine the numerators over the common denominator.
r=√0+(2-32)2r=√0+(2−32)2
Step 2.3.5
Subtract 33 from 22.
r=√0+(-12)2r=√0+(−12)2
Step 2.3.6
Move the negative in front of the fraction.
r=√0+(-12)2r=√0+(−12)2
Step 2.3.7
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.3.7.1
Apply the product rule to -12−12.
r=√0+(-1)2(12)2r=√0+(−1)2(12)2
Step 2.3.7.2
Apply the product rule to 1212.
r=√0+(-1)2(1222)r=√0+(−1)2(1222)
r=√0+(-1)2(1222)r=√0+(−1)2(1222)
Step 2.3.8
Raise -1−1 to the power of 22.
r=√0+1(1222)r=√0+1(1222)
Step 2.3.9
Multiply 12221222 by 11.
r=√0+1222r=√0+1222
Step 2.3.10
One to any power is one.
r=√0+122r=√0+122
Step 2.3.11
Raise 22 to the power of 22.
r=√0+14r=√0+14
Step 2.3.12
Add 00 and 1414.
r=√14r=√14
Step 2.3.13
Rewrite √14√14 as √1√4√1√4.
r=√1√4r=√1√4
Step 2.3.14
Any root of 11 is 11.
r=1√4r=1√4
Step 2.3.15
Simplify the denominator.
Step 2.3.15.1
Rewrite 44 as 2222.
r=1√22r=1√22
Step 2.3.15.2
Pull terms out from under the radical, assuming positive real numbers.
r=12r=12
r=12r=12
r=12r=12
r=12r=12
Step 3
(x-h)2+(y-k)2=r2(x−h)2+(y−k)2=r2 is the equation form for a circle with rr radius and (h,k)(h,k) as the center point. In this case, r=12r=12 and the center point is (1,32)(1,32). The equation for the circle is (x-(1))2+(y-(32))2=(12)2(x−(1))2+(y−(32))2=(12)2.
(x-(1))2+(y-(32))2=(12)2(x−(1))2+(y−(32))2=(12)2
Step 4
The circle equation is (x-1)2+(y-32)2=14(x−1)2+(y−32)2=14.
(x-1)2+(y-32)2=14(x−1)2+(y−32)2=14
Step 5