Algebra Examples

Find the Circle Using the Diameter End Points
(1,1)(1,1) , (1,2)(1,2)
Step 1
The diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints are on the circumference of the circle. The given end points of the diameter are (1,1)(1,1) and (1,2)(1,2). The center point of the circle is the center of the diameter, which is the midpoint between (1,1)(1,1) and (1,2)(1,2). In this case the midpoint is (1,32)(1,32).
Tap for more steps...
Step 1.1
Use the midpoint formula to find the midpoint of the line segment.
(x1+x22,y1+y22)(x1+x22,y1+y22)
Step 1.2
Substitute in the values for (x1,y1)(x1,y1) and (x2,y2)(x2,y2).
(1+12,1+22)(1+12,1+22)
Step 1.3
Add 11 and 11.
(22,1+22)(22,1+22)
Step 1.4
Divide 22 by 22.
(1,1+22)(1,1+22)
Step 1.5
Add 11 and 22.
(1,32)(1,32)
(1,32)(1,32)
Step 2
Find the radius rr for the circle. The radius is any line segment from the center of the circle to any point on its circumference. In this case, rr is the distance between (1,32)(1,32) and (1,1)(1,1).
Tap for more steps...
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=(x2-x1)2+(y2-y1)2Distance=(x2x1)2+(y2y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
r=(1-1)2+(1-32)2r=(11)2+(132)2
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Subtract 11 from 11.
r=02+(1-32)2r=02+(132)2
Step 2.3.2
Raising 00 to any positive power yields 00.
r=0+(1-32)2r=0+(132)2
Step 2.3.3
Write 11 as a fraction with a common denominator.
r=0+(22-32)2r=0+(2232)2
Step 2.3.4
Combine the numerators over the common denominator.
r=0+(2-32)2r=0+(232)2
Step 2.3.5
Subtract 33 from 22.
r=0+(-12)2r=0+(12)2
Step 2.3.6
Move the negative in front of the fraction.
r=0+(-12)2r=0+(12)2
Step 2.3.7
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.3.7.1
Apply the product rule to -1212.
r=0+(-1)2(12)2r=0+(1)2(12)2
Step 2.3.7.2
Apply the product rule to 1212.
r=0+(-1)2(1222)r=0+(1)2(1222)
r=0+(-1)2(1222)r=0+(1)2(1222)
Step 2.3.8
Raise -11 to the power of 22.
r=0+1(1222)r=0+1(1222)
Step 2.3.9
Multiply 12221222 by 11.
r=0+1222r=0+1222
Step 2.3.10
One to any power is one.
r=0+122r=0+122
Step 2.3.11
Raise 22 to the power of 22.
r=0+14r=0+14
Step 2.3.12
Add 00 and 1414.
r=14r=14
Step 2.3.13
Rewrite 1414 as 1414.
r=14r=14
Step 2.3.14
Any root of 11 is 11.
r=14r=14
Step 2.3.15
Simplify the denominator.
Tap for more steps...
Step 2.3.15.1
Rewrite 44 as 2222.
r=122r=122
Step 2.3.15.2
Pull terms out from under the radical, assuming positive real numbers.
r=12r=12
r=12r=12
r=12r=12
r=12r=12
Step 3
(x-h)2+(y-k)2=r2(xh)2+(yk)2=r2 is the equation form for a circle with rr radius and (h,k)(h,k) as the center point. In this case, r=12r=12 and the center point is (1,32)(1,32). The equation for the circle is (x-(1))2+(y-(32))2=(12)2(x(1))2+(y(32))2=(12)2.
(x-(1))2+(y-(32))2=(12)2(x(1))2+(y(32))2=(12)2
Step 4
The circle equation is (x-1)2+(y-32)2=14(x1)2+(y32)2=14.
(x-1)2+(y-32)2=14(x1)2+(y32)2=14
Step 5
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay