Algebra Examples
-3-4+i−3−4+i
Step 1
Multiply the numerator and denominator of -3-4+1i−3−4+1i by the conjugate of -4+1i−4+1i to make the denominator real.
-3-4+1i⋅-4-i-4-i−3−4+1i⋅−4−i−4−i
Step 2
Step 2.1
Combine.
-3(-4-i)(-4+1i)(-4-i)−3(−4−i)(−4+1i)(−4−i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Apply the distributive property.
-3⋅-4-3(-i)(-4+1i)(-4-i)−3⋅−4−3(−i)(−4+1i)(−4−i)
Step 2.2.2
Multiply -3−3 by -4−4.
12-3(-i)(-4+1i)(-4-i)12−3(−i)(−4+1i)(−4−i)
Step 2.2.3
Multiply -1−1 by -3−3.
12+3i(-4+1i)(-4-i)12+3i(−4+1i)(−4−i)
12+3i(-4+1i)(-4-i)12+3i(−4+1i)(−4−i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (-4+1i)(-4-i)(−4+1i)(−4−i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
12+3i-4(-4-i)+1i(-4-i)12+3i−4(−4−i)+1i(−4−i)
Step 2.3.1.2
Apply the distributive property.
12+3i-4⋅-4-4(-i)+1i(-4-i)
Step 2.3.1.3
Apply the distributive property.
12+3i-4⋅-4-4(-i)+1i⋅-4+1i(-i)
12+3i-4⋅-4-4(-i)+1i⋅-4+1i(-i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply -4 by -4.
12+3i16-4(-i)+1i⋅-4+1i(-i)
Step 2.3.2.2
Multiply -1 by -4.
12+3i16+4i+1i⋅-4+1i(-i)
Step 2.3.2.3
Multiply -4 by 1.
12+3i16+4i-4i+1i(-i)
Step 2.3.2.4
Multiply -1 by 1.
12+3i16+4i-4i-ii
Step 2.3.2.5
Raise i to the power of 1.
12+3i16+4i-4i-(i1i)
Step 2.3.2.6
Raise i to the power of 1.
12+3i16+4i-4i-(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
12+3i16+4i-4i-i1+1
Step 2.3.2.8
Add 1 and 1.
12+3i16+4i-4i-i2
Step 2.3.2.9
Subtract 4i from 4i.
12+3i16+0-i2
Step 2.3.2.10
Add 16 and 0.
12+3i16-i2
12+3i16-i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
12+3i16--1
Step 2.3.3.2
Multiply -1 by -1.
12+3i16+1
12+3i16+1
Step 2.3.4
Add 16 and 1.
12+3i17
12+3i17
12+3i17
Step 3
Split the fraction 12+3i17 into two fractions.
1217+3i17