Algebra Examples

Solve Using the Square Root Property
3x-1=5
Step 1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(3x-1)=ln(5)
Step 2
Expand ln(3x-1) by moving x-1 outside the logarithm.
(x-1)ln(3)=ln(5)
Step 3
Simplify the left side.
Tap for more steps...
Step 3.1
Simplify (x-1)ln(3).
Tap for more steps...
Step 3.1.1
Apply the distributive property.
xln(3)-1ln(3)=ln(5)
Step 3.1.2
Rewrite -1ln(3) as -ln(3).
xln(3)-ln(3)=ln(5)
xln(3)-ln(3)=ln(5)
xln(3)-ln(3)=ln(5)
Step 4
Move all the terms containing a logarithm to the left side of the equation.
xln(3)-ln(3)-ln(5)=0
Step 5
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 5.1
Add ln(3) to both sides of the equation.
xln(3)-ln(5)=ln(3)
Step 5.2
Add ln(5) to both sides of the equation.
xln(3)=ln(3)+ln(5)
xln(3)=ln(3)+ln(5)
Step 6
Divide each term in xln(3)=ln(3)+ln(5) by ln(3) and simplify.
Tap for more steps...
Step 6.1
Divide each term in xln(3)=ln(3)+ln(5) by ln(3).
xln(3)ln(3)=ln(3)ln(3)+ln(5)ln(3)
Step 6.2
Simplify the left side.
Tap for more steps...
Step 6.2.1
Cancel the common factor of ln(3).
Tap for more steps...
Step 6.2.1.1
Cancel the common factor.
xln(3)ln(3)=ln(3)ln(3)+ln(5)ln(3)
Step 6.2.1.2
Divide x by 1.
x=ln(3)ln(3)+ln(5)ln(3)
x=ln(3)ln(3)+ln(5)ln(3)
x=ln(3)ln(3)+ln(5)ln(3)
Step 6.3
Simplify the right side.
Tap for more steps...
Step 6.3.1
Cancel the common factor of ln(3).
Tap for more steps...
Step 6.3.1.1
Cancel the common factor.
x=ln(3)ln(3)+ln(5)ln(3)
Step 6.3.1.2
Rewrite the expression.
x=1+ln(5)ln(3)
x=1+ln(5)ln(3)
x=1+ln(5)ln(3)
x=1+ln(5)ln(3)
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay