Algebra Examples

Solve Using the Square Root Property
x2+7x-12=0x2+7x12=0
Step 1
Multiply through by the least common denominator 22, then simplify.
Tap for more steps...
Step 1.1
Apply the distributive property.
2x2+2(7x)+2(-12)=02x2+2(7x)+2(12)=0
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Multiply 77 by 22.
2x2+14x+2(-12)=02x2+14x+2(12)=0
Step 1.2.2
Cancel the common factor of 22.
Tap for more steps...
Step 1.2.2.1
Move the leading negative in -1212 into the numerator.
2x2+14x+2(-12)=02x2+14x+2(12)=0
Step 1.2.2.2
Cancel the common factor.
2x2+14x+2(-12)=0
Step 1.2.2.3
Rewrite the expression.
2x2+14x-1=0
2x2+14x-1=0
2x2+14x-1=0
2x2+14x-1=0
Step 2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 3
Substitute the values a=2, b=14, and c=-1 into the quadratic formula and solve for x.
-14±142-4(2-1)22
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 14 to the power of 2.
x=-14±196-42-122
Step 4.1.2
Multiply -42-1.
Tap for more steps...
Step 4.1.2.1
Multiply -4 by 2.
x=-14±196-8-122
Step 4.1.2.2
Multiply -8 by -1.
x=-14±196+822
x=-14±196+822
Step 4.1.3
Add 196 and 8.
x=-14±20422
Step 4.1.4
Rewrite 204 as 2251.
Tap for more steps...
Step 4.1.4.1
Factor 4 out of 204.
x=-14±4(51)22
Step 4.1.4.2
Rewrite 4 as 22.
x=-14±225122
x=-14±225122
Step 4.1.5
Pull terms out from under the radical.
x=-14±25122
x=-14±25122
Step 4.2
Multiply 2 by 2.
x=-14±2514
Step 4.3
Simplify -14±2514.
x=-7±512
x=-7±512
Step 5
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Raise 14 to the power of 2.
x=-14±196-42-122
Step 5.1.2
Multiply -42-1.
Tap for more steps...
Step 5.1.2.1
Multiply -4 by 2.
x=-14±196-8-122
Step 5.1.2.2
Multiply -8 by -1.
x=-14±196+822
x=-14±196+822
Step 5.1.3
Add 196 and 8.
x=-14±20422
Step 5.1.4
Rewrite 204 as 2251.
Tap for more steps...
Step 5.1.4.1
Factor 4 out of 204.
x=-14±4(51)22
Step 5.1.4.2
Rewrite 4 as 22.
x=-14±225122
x=-14±225122
Step 5.1.5
Pull terms out from under the radical.
x=-14±25122
x=-14±25122
Step 5.2
Multiply 2 by 2.
x=-14±2514
Step 5.3
Simplify -14±2514.
x=-7±512
Step 5.4
Change the ± to +.
x=-7+512
Step 5.5
Rewrite -7 as -1(7).
x=-17+512
Step 5.6
Factor -1 out of 51.
x=-17-1(-51)2
Step 5.7
Factor -1 out of -1(7)-1(-51).
x=-1(7-51)2
Step 5.8
Move the negative in front of the fraction.
x=-7-512
x=-7-512
Step 6
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Raise 14 to the power of 2.
x=-14±196-42-122
Step 6.1.2
Multiply -42-1.
Tap for more steps...
Step 6.1.2.1
Multiply -4 by 2.
x=-14±196-8-122
Step 6.1.2.2
Multiply -8 by -1.
x=-14±196+822
x=-14±196+822
Step 6.1.3
Add 196 and 8.
x=-14±20422
Step 6.1.4
Rewrite 204 as 2251.
Tap for more steps...
Step 6.1.4.1
Factor 4 out of 204.
x=-14±4(51)22
Step 6.1.4.2
Rewrite 4 as 22.
x=-14±225122
x=-14±225122
Step 6.1.5
Pull terms out from under the radical.
x=-14±25122
x=-14±25122
Step 6.2
Multiply 2 by 2.
x=-14±2514
Step 6.3
Simplify -14±2514.
x=-7±512
Step 6.4
Change the ± to -.
x=-7-512
Step 6.5
Rewrite -7 as -1(7).
x=-17-512
Step 6.6
Factor -1 out of -51.
x=-17-(51)2
Step 6.7
Factor -1 out of -1(7)-(51).
x=-1(7+51)2
Step 6.8
Move the negative in front of the fraction.
x=-7+512
x=-7+512
Step 7
The final answer is the combination of both solutions.
x=-7-512,-7+512
Step 8
The result can be shown in multiple forms.
Exact Form:
x=-7-512,-7+512
Decimal Form:
x=0.07071421,-7.07071421
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay