Algebra Examples
x2+7x-12=0x2+7x−12=0
Step 1
Step 1.1
Apply the distributive property.
2x2+2(7x)+2(-12)=02x2+2(7x)+2(−12)=0
Step 1.2
Simplify.
Step 1.2.1
Multiply 77 by 22.
2x2+14x+2(-12)=02x2+14x+2(−12)=0
Step 1.2.2
Cancel the common factor of 22.
Step 1.2.2.1
Move the leading negative in -12−12 into the numerator.
2x2+14x+2(-12)=02x2+14x+2(−12)=0
Step 1.2.2.2
Cancel the common factor.
2x2+14x+2(-12)=0
Step 1.2.2.3
Rewrite the expression.
2x2+14x-1=0
2x2+14x-1=0
2x2+14x-1=0
2x2+14x-1=0
Step 2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 3
Substitute the values a=2, b=14, and c=-1 into the quadratic formula and solve for x.
-14±√142-4⋅(2⋅-1)2⋅2
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raise 14 to the power of 2.
x=-14±√196-4⋅2⋅-12⋅2
Step 4.1.2
Multiply -4⋅2⋅-1.
Step 4.1.2.1
Multiply -4 by 2.
x=-14±√196-8⋅-12⋅2
Step 4.1.2.2
Multiply -8 by -1.
x=-14±√196+82⋅2
x=-14±√196+82⋅2
Step 4.1.3
Add 196 and 8.
x=-14±√2042⋅2
Step 4.1.4
Rewrite 204 as 22⋅51.
Step 4.1.4.1
Factor 4 out of 204.
x=-14±√4(51)2⋅2
Step 4.1.4.2
Rewrite 4 as 22.
x=-14±√22⋅512⋅2
x=-14±√22⋅512⋅2
Step 4.1.5
Pull terms out from under the radical.
x=-14±2√512⋅2
x=-14±2√512⋅2
Step 4.2
Multiply 2 by 2.
x=-14±2√514
Step 4.3
Simplify -14±2√514.
x=-7±√512
x=-7±√512
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Raise 14 to the power of 2.
x=-14±√196-4⋅2⋅-12⋅2
Step 5.1.2
Multiply -4⋅2⋅-1.
Step 5.1.2.1
Multiply -4 by 2.
x=-14±√196-8⋅-12⋅2
Step 5.1.2.2
Multiply -8 by -1.
x=-14±√196+82⋅2
x=-14±√196+82⋅2
Step 5.1.3
Add 196 and 8.
x=-14±√2042⋅2
Step 5.1.4
Rewrite 204 as 22⋅51.
Step 5.1.4.1
Factor 4 out of 204.
x=-14±√4(51)2⋅2
Step 5.1.4.2
Rewrite 4 as 22.
x=-14±√22⋅512⋅2
x=-14±√22⋅512⋅2
Step 5.1.5
Pull terms out from under the radical.
x=-14±2√512⋅2
x=-14±2√512⋅2
Step 5.2
Multiply 2 by 2.
x=-14±2√514
Step 5.3
Simplify -14±2√514.
x=-7±√512
Step 5.4
Change the ± to +.
x=-7+√512
Step 5.5
Rewrite -7 as -1(7).
x=-1⋅7+√512
Step 5.6
Factor -1 out of √51.
x=-1⋅7-1(-√51)2
Step 5.7
Factor -1 out of -1(7)-1(-√51).
x=-1(7-√51)2
Step 5.8
Move the negative in front of the fraction.
x=-7-√512
x=-7-√512
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Raise 14 to the power of 2.
x=-14±√196-4⋅2⋅-12⋅2
Step 6.1.2
Multiply -4⋅2⋅-1.
Step 6.1.2.1
Multiply -4 by 2.
x=-14±√196-8⋅-12⋅2
Step 6.1.2.2
Multiply -8 by -1.
x=-14±√196+82⋅2
x=-14±√196+82⋅2
Step 6.1.3
Add 196 and 8.
x=-14±√2042⋅2
Step 6.1.4
Rewrite 204 as 22⋅51.
Step 6.1.4.1
Factor 4 out of 204.
x=-14±√4(51)2⋅2
Step 6.1.4.2
Rewrite 4 as 22.
x=-14±√22⋅512⋅2
x=-14±√22⋅512⋅2
Step 6.1.5
Pull terms out from under the radical.
x=-14±2√512⋅2
x=-14±2√512⋅2
Step 6.2
Multiply 2 by 2.
x=-14±2√514
Step 6.3
Simplify -14±2√514.
x=-7±√512
Step 6.4
Change the ± to -.
x=-7-√512
Step 6.5
Rewrite -7 as -1(7).
x=-1⋅7-√512
Step 6.6
Factor -1 out of -√51.
x=-1⋅7-(√51)2
Step 6.7
Factor -1 out of -1(7)-(√51).
x=-1(7+√51)2
Step 6.8
Move the negative in front of the fraction.
x=-7+√512
x=-7+√512
Step 7
The final answer is the combination of both solutions.
x=-7-√512,-7+√512
Step 8
The result can be shown in multiple forms.
Exact Form:
x=-7-√512,-7+√512
Decimal Form:
x=0.07071421…,-7.07071421…