Algebra Examples
|2y|=3+2|2y|=3+2
Step 1
Add 33 and 22.
|2y|=5|2y|=5
Step 2
Remove the absolute value term. This creates a ±± on the right side of the equation because |x|=±x|x|=±x.
2y=±52y=±5
Step 3
Step 3.1
First, use the positive value of the ±± to find the first solution.
2y=52y=5
Step 3.2
Divide each term in 2y=52y=5 by 22 and simplify.
Step 3.2.1
Divide each term in 2y=52y=5 by 22.
2y2=522y2=52
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of 22.
Step 3.2.2.1.1
Cancel the common factor.
2y2=522y2=52
Step 3.2.2.1.2
Divide yy by 11.
y=52y=52
y=52y=52
y=52y=52
y=52y=52
Step 3.3
Next, use the negative value of the ±± to find the second solution.
2y=-52y=−5
Step 3.4
Divide each term in 2y=-52y=−5 by 22 and simplify.
Step 3.4.1
Divide each term in 2y=-52y=−5 by 22.
2y2=-522y2=−52
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Cancel the common factor of 22.
Step 3.4.2.1.1
Cancel the common factor.
2y2=-522y2=−52
Step 3.4.2.1.2
Divide yy by 11.
y=-52y=−52
y=-52y=−52
y=-52y=−52
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Move the negative in front of the fraction.
y=-52y=−52
y=-52y=−52
y=-52y=−52
Step 3.5
The complete solution is the result of both the positive and negative portions of the solution.
y=52,-52y=52,−52
y=52,-52y=52,−52
Step 4
The result can be shown in multiple forms.
Exact Form:
y=52,-52y=52,−52
Decimal Form:
y=2.5,-2.5y=2.5,−2.5
Mixed Number Form:
y=212,-212y=212,−212