Algebra Examples
4x-y=24x−y=2 , 6x-2y=-16x−2y=−1
Step 1
To find the intersection of the line through a point (p,q,r)(p,q,r) perpendicular to plane P1P1 ax+by+cz=dax+by+cz=d and plane P2P2 ex+fy+gz=hex+fy+gz=h:
1. Find the normal vectors of plane P1P1 and plane P2P2 where the normal vectors are n1=⟨a,b,c⟩n1=⟨a,b,c⟩ and n2=⟨e,f,g⟩n2=⟨e,f,g⟩. Check to see if the dot product is 0.
2. Create a set of parametric equations such that x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct.
3. Substitute these equations into the equation for plane P2P2 such that e(p+at)+f(q+bt)+g(r+ct)=he(p+at)+f(q+bt)+g(r+ct)=h and solve for tt.
4. Using the value of tt, solve the parametric equations x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct for tt to find the intersection (x,y,z)(x,y,z).
Step 2
Step 2.1
P1P1 is 4x-y=24x−y=2. Find the normal vector n1=⟨a,b,c⟩n1=⟨a,b,c⟩ from the plane equation of the form ax+by+cz=dax+by+cz=d.
n1=⟨4,-1,0⟩n1=⟨4,−1,0⟩
Step 2.2
P2P2 is 6x-2y=-16x−2y=−1. Find the normal vector n2=⟨e,f,g⟩n2=⟨e,f,g⟩ from the plane equation of the form ex+fy+gz=hex+fy+gz=h.
n2=⟨6,-2,0⟩n2=⟨6,−2,0⟩
Step 2.3
Calculate the dot product of n1n1 and n2n2 by summing the products of the corresponding xx, yy, and zz values in the normal vectors.
4⋅6-1⋅-2+0⋅04⋅6−1⋅−2+0⋅0
Step 2.4
Simplify the dot product.
Step 2.4.1
Remove parentheses.
4⋅6-1⋅-2+0⋅04⋅6−1⋅−2+0⋅0
Step 2.4.2
Simplify each term.
Step 2.4.2.1
Multiply 44 by 66.
24-1⋅-2+0⋅024−1⋅−2+0⋅0
Step 2.4.2.2
Multiply -1−1 by -2−2.
24+2+0⋅024+2+0⋅0
Step 2.4.2.3
Multiply 00 by 00.
24+2+024+2+0
24+2+024+2+0
Step 2.4.3
Simplify by adding numbers.
Step 2.4.3.1
Add 2424 and 22.
26+026+0
Step 2.4.3.2
Add 2626 and 00.
2626
2626
2626
2626
Step 3
Next, build a set of parametric equations x=p+atx=p+at,y=q+bty=q+bt, and z=r+ctz=r+ct using the origin (0,0,0)(0,0,0) for the point (p,q,r)(p,q,r) and the values from the normal vector 2626 for the values of aa, bb, and cc. This set of parametric equations represents the line through the origin that is perpendicular to P1P1 4x-y=24x−y=2.
x=0+4⋅tx=0+4⋅t
y=0+-1⋅ty=0+−1⋅t
z=0+0⋅tz=0+0⋅t
Step 4
Substitute the expression for xx, yy, and zz into the equation for P2P2 6x-2y=-16x−2y=−1.
6(0+4⋅t)-2(0-1⋅t)=-16(0+4⋅t)−2(0−1⋅t)=−1
Step 5
Step 5.1
Simplify 6(0+4⋅t)-2(0-1⋅t)6(0+4⋅t)−2(0−1⋅t).
Step 5.1.1
Combine the opposite terms in 6(0+4⋅t)-2(0-1⋅t)6(0+4⋅t)−2(0−1⋅t).
Step 5.1.1.1
Add 00 and 4⋅t4⋅t.
6(4⋅t)-2(0-1⋅t)=-16(4⋅t)−2(0−1⋅t)=−1
Step 5.1.1.2
Subtract 1⋅t1⋅t from 00.
6(4⋅t)-2(-1⋅t)=-16(4⋅t)−2(−1⋅t)=−1
6(4⋅t)-2(-1⋅t)=-16(4⋅t)−2(−1⋅t)=−1
Step 5.1.2
Simplify each term.
Step 5.1.2.1
Multiply 44 by 66.
24t-2(-1⋅t)=-124t−2(−1⋅t)=−1
Step 5.1.2.2
Rewrite -1t−1t as -t−t.
24t-2(-t)=-124t−2(−t)=−1
Step 5.1.2.3
Multiply -1−1 by -2−2.
24t+2t=-124t+2t=−1
24t+2t=-124t+2t=−1
Step 5.1.3
Add 24t24t and 2t2t.
26t=-126t=−1
26t=-126t=−1
Step 5.2
Divide each term in 26t=-126t=−1 by 2626 and simplify.
Step 5.2.1
Divide each term in 26t=-126t=−1 by 2626.
26t26=-12626t26=−126
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Cancel the common factor of 2626.
Step 5.2.2.1.1
Cancel the common factor.
26t26=-126
Step 5.2.2.1.2
Divide t by 1.
t=-126
t=-126
t=-126
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
Move the negative in front of the fraction.
t=-126
t=-126
t=-126
t=-126
Step 6
Step 6.1
Solve the equation for x.
Step 6.1.1
Remove parentheses.
x=0+4⋅(-1(126))
Step 6.1.2
Remove parentheses.
x=0+4⋅(-126)
Step 6.1.3
Simplify 0+4⋅(-126).
Step 6.1.3.1
Simplify each term.
Step 6.1.3.1.1
Cancel the common factor of 2.
Step 6.1.3.1.1.1
Move the leading negative in -126 into the numerator.
x=0+4⋅-126
Step 6.1.3.1.1.2
Factor 2 out of 4.
x=0+2(2)⋅-126
Step 6.1.3.1.1.3
Factor 2 out of 26.
x=0+2⋅2⋅-12⋅13
Step 6.1.3.1.1.4
Cancel the common factor.
x=0+2⋅2⋅-12⋅13
Step 6.1.3.1.1.5
Rewrite the expression.
x=0+2⋅-113
x=0+2⋅-113
Step 6.1.3.1.2
Combine 2 and -113.
x=0+2⋅-113
Step 6.1.3.1.3
Multiply 2 by -1.
x=0+-213
Step 6.1.3.1.4
Move the negative in front of the fraction.
x=0-213
x=0-213
Step 6.1.3.2
Subtract 213 from 0.
x=-213
x=-213
x=-213
Step 6.2
Solve the equation for y.
Step 6.2.1
Remove parentheses.
y=0-1⋅(-1(126))
Step 6.2.2
Remove parentheses.
y=0-1⋅(-126)
Step 6.2.3
Simplify 0-1⋅(-126).
Step 6.2.3.1
Multiply -1(-126).
Step 6.2.3.1.1
Multiply -1 by -1.
y=0+1(126)
Step 6.2.3.1.2
Multiply 126 by 1.
y=0+126
y=0+126
Step 6.2.3.2
Add 0 and 126.
y=126
y=126
y=126
Step 6.3
Solve the equation for z.
Step 6.3.1
Remove parentheses.
z=0+0⋅(-1(126))
Step 6.3.2
Remove parentheses.
z=0+0⋅(-126)
Step 6.3.3
Simplify 0+0⋅(-126).
Step 6.3.3.1
Multiply 0(-126).
Step 6.3.3.1.1
Multiply -1 by 0.
z=0+0(126)
Step 6.3.3.1.2
Multiply 0 by 126.
z=0+0
z=0+0
Step 6.3.3.2
Add 0 and 0.
z=0
z=0
z=0
Step 6.4
The solved parametric equations for x, y, and z.
x=-213
y=126
z=0
x=-213
y=126
z=0
Step 7
Using the values calculated for x, y, and z, the intersection point is found to be (-213,126,0).
(-213,126,0)