Examples

Find the Function Rule
xq(x)41071626
Step 1
Check if the function rule is linear.
Tap for more steps...
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form y=ax+b.
y=ax+b
Step 1.2
Build a set of equations from the table such that q(x)=ax+b.
10=a(4)+b16=a(7)+b6=a(2)+b
Step 1.3
Calculate the values of a and b.
Tap for more steps...
Step 1.3.1
Solve for b in 10=a(4)+b.
Tap for more steps...
Step 1.3.1.1
Rewrite the equation as a(4)+b=10.
a(4)+b=10
16=a(7)+b
6=a(2)+b
Step 1.3.1.2
Move 4 to the left of a.
4a+b=10
16=a(7)+b
6=a(2)+b
Step 1.3.1.3
Subtract 4a from both sides of the equation.
b=10-4a
16=a(7)+b
6=a(2)+b
b=10-4a
16=a(7)+b
6=a(2)+b
Step 1.3.2
Replace all occurrences of b with 10-4a in each equation.
Tap for more steps...
Step 1.3.2.1
Replace all occurrences of b in 16=a(7)+b with 10-4a.
16=a(7)+10-4a
b=10-4a
6=a(2)+b
Step 1.3.2.2
Simplify 16=a(7)+10-4a.
Tap for more steps...
Step 1.3.2.2.1
Simplify the left side.
Tap for more steps...
Step 1.3.2.2.1.1
Remove parentheses.
16=a(7)+10-4a
b=10-4a
6=a(2)+b
16=a(7)+10-4a
b=10-4a
6=a(2)+b
Step 1.3.2.2.2
Simplify the right side.
Tap for more steps...
Step 1.3.2.2.2.1
Simplify a(7)+10-4a.
Tap for more steps...
Step 1.3.2.2.2.1.1
Move 7 to the left of a.
16=7a+10-4a
b=10-4a
6=a(2)+b
Step 1.3.2.2.2.1.2
Subtract 4a from 7a.
16=3a+10
b=10-4a
6=a(2)+b
16=3a+10
b=10-4a
6=a(2)+b
16=3a+10
b=10-4a
6=a(2)+b
16=3a+10
b=10-4a
6=a(2)+b
Step 1.3.2.3
Replace all occurrences of b in 6=a(2)+b with 10-4a.
6=a(2)+10-4a
16=3a+10
b=10-4a
Step 1.3.2.4
Simplify 6=a(2)+10-4a.
Tap for more steps...
Step 1.3.2.4.1
Simplify the left side.
Tap for more steps...
Step 1.3.2.4.1.1
Remove parentheses.
6=a(2)+10-4a
16=3a+10
b=10-4a
6=a(2)+10-4a
16=3a+10
b=10-4a
Step 1.3.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.3.2.4.2.1
Simplify a(2)+10-4a.
Tap for more steps...
Step 1.3.2.4.2.1.1
Move 2 to the left of a.
6=2a+10-4a
16=3a+10
b=10-4a
Step 1.3.2.4.2.1.2
Subtract 4a from 2a.
6=-2a+10
16=3a+10
b=10-4a
6=-2a+10
16=3a+10
b=10-4a
6=-2a+10
16=3a+10
b=10-4a
6=-2a+10
16=3a+10
b=10-4a
6=-2a+10
16=3a+10
b=10-4a
Step 1.3.3
Solve for a in 6=-2a+10.
Tap for more steps...
Step 1.3.3.1
Rewrite the equation as -2a+10=6.
-2a+10=6
16=3a+10
b=10-4a
Step 1.3.3.2
Move all terms not containing a to the right side of the equation.
Tap for more steps...
Step 1.3.3.2.1
Subtract 10 from both sides of the equation.
-2a=6-10
16=3a+10
b=10-4a
Step 1.3.3.2.2
Subtract 10 from 6.
-2a=-4
16=3a+10
b=10-4a
-2a=-4
16=3a+10
b=10-4a
Step 1.3.3.3
Divide each term in -2a=-4 by -2 and simplify.
Tap for more steps...
Step 1.3.3.3.1
Divide each term in -2a=-4 by -2.
-2a-2=-4-2
16=3a+10
b=10-4a
Step 1.3.3.3.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.3.2.1
Cancel the common factor of -2.
Tap for more steps...
Step 1.3.3.3.2.1.1
Cancel the common factor.
-2a-2=-4-2
16=3a+10
b=10-4a
Step 1.3.3.3.2.1.2
Divide a by 1.
a=-4-2
16=3a+10
b=10-4a
a=-4-2
16=3a+10
b=10-4a
a=-4-2
16=3a+10
b=10-4a
Step 1.3.3.3.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.3.3.1
Divide -4 by -2.
a=2
16=3a+10
b=10-4a
a=2
16=3a+10
b=10-4a
a=2
16=3a+10
b=10-4a
a=2
16=3a+10
b=10-4a
Step 1.3.4
Replace all occurrences of a with 2 in each equation.
Tap for more steps...
Step 1.3.4.1
Replace all occurrences of a in 16=3a+10 with 2.
16=3(2)+10
a=2
b=10-4a
Step 1.3.4.2
Simplify the right side.
Tap for more steps...
Step 1.3.4.2.1
Simplify 3(2)+10.
Tap for more steps...
Step 1.3.4.2.1.1
Multiply 3 by 2.
16=6+10
a=2
b=10-4a
Step 1.3.4.2.1.2
Add 6 and 10.
16=16
a=2
b=10-4a
16=16
a=2
b=10-4a
16=16
a=2
b=10-4a
Step 1.3.4.3
Replace all occurrences of a in b=10-4a with 2.
b=10-42
16=16
a=2
Step 1.3.4.4
Simplify the right side.
Tap for more steps...
Step 1.3.4.4.1
Simplify 10-42.
Tap for more steps...
Step 1.3.4.4.1.1
Multiply -4 by 2.
b=10-8
16=16
a=2
Step 1.3.4.4.1.2
Subtract 8 from 10.
b=2
16=16
a=2
b=2
16=16
a=2
b=2
16=16
a=2
b=2
16=16
a=2
Step 1.3.5
Remove any equations from the system that are always true.
b=2
a=2
Step 1.3.6
List all of the solutions.
b=2,a=2
b=2,a=2
Step 1.4
Calculate the value of y using each x value in the relation and compare this value to the given q(x) value in the relation.
Tap for more steps...
Step 1.4.1
Calculate the value of y when a=2, b=2, and x=4.
Tap for more steps...
Step 1.4.1.1
Multiply 2 by 4.
y=8+2
Step 1.4.1.2
Add 8 and 2.
y=10
y=10
Step 1.4.2
If the table has a linear function rule, y=q(x) for the corresponding x value, x=4. This check passes since y=10 and q(x)=10.
10=10
Step 1.4.3
Calculate the value of y when a=2, b=2, and x=7.
Tap for more steps...
Step 1.4.3.1
Multiply 2 by 7.
y=14+2
Step 1.4.3.2
Add 14 and 2.
y=16
y=16
Step 1.4.4
If the table has a linear function rule, y=q(x) for the corresponding x value, x=7. This check passes since y=16 and q(x)=16.
16=16
Step 1.4.5
Calculate the value of y when a=2, b=2, and x=2.
Tap for more steps...
Step 1.4.5.1
Multiply 2 by 2.
y=4+2
Step 1.4.5.2
Add 4 and 2.
y=6
y=6
Step 1.4.6
If the table has a linear function rule, y=q(x) for the corresponding x value, x=2. This check passes since y=6 and q(x)=6.
6=6
Step 1.4.7
Since y=q(x) for the corresponding x values, the function is linear.
The function is linear
The function is linear
The function is linear
Step 2
Since all y=q(x), the function is linear and follows the form y=2x+2.
y=2x+2
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay