Examples
-3-2y-2y+2−3−2y−2y+2
Step 1
Dividing two negative values results in a positive value.
32y-2y+232y−2y+2
Step 2
To write 32y32y as a fraction with a common denominator, multiply by y+2y+2y+2y+2.
32y⋅y+2y+2-2y+232y⋅y+2y+2−2y+2
Step 3
To write -2y+2−2y+2 as a fraction with a common denominator, multiply by 2y2y2y2y.
32y⋅y+2y+2-2y+2⋅2y2y32y⋅y+2y+2−2y+2⋅2y2y
Step 4
Step 4.1
Multiply 32y32y by y+2y+2y+2y+2.
3(y+2)2y(y+2)-2y+2⋅2y2y3(y+2)2y(y+2)−2y+2⋅2y2y
Step 4.2
Multiply 2y+22y+2 by 2y2y2y2y.
3(y+2)2y(y+2)-2(2y)(y+2)(2y)3(y+2)2y(y+2)−2(2y)(y+2)(2y)
Step 4.3
Reorder the factors of (y+2)(2y)(y+2)(2y).
3(y+2)2y(y+2)-2(2y)2y(y+2)3(y+2)2y(y+2)−2(2y)2y(y+2)
3(y+2)2y(y+2)-2(2y)2y(y+2)3(y+2)2y(y+2)−2(2y)2y(y+2)
Step 5
Combine the numerators over the common denominator.
3(y+2)-2(2y)2y(y+2)3(y+2)−2(2y)2y(y+2)
Step 6
Step 6.1
Apply the distributive property.
3y+3⋅2-2⋅2y2y(y+2)3y+3⋅2−2⋅2y2y(y+2)
Step 6.2
Multiply 33 by 22.
3y+6-2⋅2y2y(y+2)3y+6−2⋅2y2y(y+2)
Step 6.3
Multiply -2−2 by 22.
3y+6-4y2y(y+2)3y+6−4y2y(y+2)
Step 6.4
Subtract 4y4y from 3y3y.
-y+62y(y+2)−y+62y(y+2)
-y+62y(y+2)−y+62y(y+2)
Step 7
Step 7.1
Factor -1−1 out of -y−y.
-(y)+62y(y+2)−(y)+62y(y+2)
Step 7.2
Rewrite 66 as -1(-6)−1(−6).
-(y)-1(-6)2y(y+2)−(y)−1(−6)2y(y+2)
Step 7.3
Factor -1 out of -(y)-1(-6).
-(y-6)2y(y+2)
Step 7.4
Simplify the expression.
Step 7.4.1
Rewrite -(y-6) as -1(y-6).
-1(y-6)2y(y+2)
Step 7.4.2
Move the negative in front of the fraction.
-y-62y(y+2)
-y-62y(y+2)
-y-62y(y+2)