Examples

Solve the Matrix Equation
[2347][xy]=[11][2347][xy]=[11]
Step 1
Multiply [2347][xy][2347][xy].
Tap for more steps...
Step 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×22×2 and the second matrix is 2×12×1.
Step 1.2
Multiply each row in the first matrix by each column in the second matrix.
[2x+3y4x+7y]=[11][2x+3y4x+7y]=[11]
[2x+3y4x+7y]=[11][2x+3y4x+7y]=[11]
Step 2
Write as a linear system of equations.
2x+3y=12x+3y=1
4x+7y=14x+7y=1
Step 3
Solve the system of equations.
Tap for more steps...
Step 3.1
Solve for xx in 2x+3y=12x+3y=1.
Tap for more steps...
Step 3.1.1
Subtract 3y3y from both sides of the equation.
2x=1-3y2x=13y
4x+7y=14x+7y=1
Step 3.1.2
Divide each term in 2x=1-3y2x=13y by 22 and simplify.
Tap for more steps...
Step 3.1.2.1
Divide each term in 2x=1-3y2x=13y by 22.
2x2=12+-3y22x2=12+3y2
4x+7y=14x+7y=1
Step 3.1.2.2
Simplify the left side.
Tap for more steps...
Step 3.1.2.2.1
Cancel the common factor of 22.
Tap for more steps...
Step 3.1.2.2.1.1
Cancel the common factor.
2x2=12+-3y2
4x+7y=1
Step 3.1.2.2.1.2
Divide x by 1.
x=12+-3y2
4x+7y=1
x=12+-3y2
4x+7y=1
x=12+-3y2
4x+7y=1
Step 3.1.2.3
Simplify the right side.
Tap for more steps...
Step 3.1.2.3.1
Move the negative in front of the fraction.
x=12-3y2
4x+7y=1
x=12-3y2
4x+7y=1
x=12-3y2
4x+7y=1
x=12-3y2
4x+7y=1
Step 3.2
Replace all occurrences of x with 12-3y2 in each equation.
Tap for more steps...
Step 3.2.1
Replace all occurrences of x in 4x+7y=1 with 12-3y2.
4(12-3y2)+7y=1
x=12-3y2
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Simplify 4(12-3y2)+7y.
Tap for more steps...
Step 3.2.2.1.1
Simplify each term.
Tap for more steps...
Step 3.2.2.1.1.1
Apply the distributive property.
4(12)+4(-3y2)+7y=1
x=12-3y2
Step 3.2.2.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.2.1.1.2.1
Factor 2 out of 4.
2(2)(12)+4(-3y2)+7y=1
x=12-3y2
Step 3.2.2.1.1.2.2
Cancel the common factor.
2(2(12))+4(-3y2)+7y=1
x=12-3y2
Step 3.2.2.1.1.2.3
Rewrite the expression.
2+4(-3y2)+7y=1
x=12-3y2
2+4(-3y2)+7y=1
x=12-3y2
Step 3.2.2.1.1.3
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.2.1.1.3.1
Move the leading negative in -3y2 into the numerator.
2+4(-3y2)+7y=1
x=12-3y2
Step 3.2.2.1.1.3.2
Factor 2 out of 4.
2+2(2)(-3y2)+7y=1
x=12-3y2
Step 3.2.2.1.1.3.3
Cancel the common factor.
2+2(2(-3y2))+7y=1
x=12-3y2
Step 3.2.2.1.1.3.4
Rewrite the expression.
2+2(-3y)+7y=1
x=12-3y2
2+2(-3y)+7y=1
x=12-3y2
Step 3.2.2.1.1.4
Multiply -3 by 2.
2-6y+7y=1
x=12-3y2
2-6y+7y=1
x=12-3y2
Step 3.2.2.1.2
Add -6y and 7y.
2+y=1
x=12-3y2
2+y=1
x=12-3y2
2+y=1
x=12-3y2
2+y=1
x=12-3y2
Step 3.3
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 3.3.1
Subtract 2 from both sides of the equation.
y=1-2
x=12-3y2
Step 3.3.2
Subtract 2 from 1.
y=-1
x=12-3y2
y=-1
x=12-3y2
Step 3.4
Replace all occurrences of y with -1 in each equation.
Tap for more steps...
Step 3.4.1
Replace all occurrences of y in x=12-3y2 with -1.
x=12-3(-1)2
y=-1
Step 3.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.1
Simplify 12-3(-1)2.
Tap for more steps...
Step 3.4.2.1.1
Combine the numerators over the common denominator.
x=1-3-12
y=-1
Step 3.4.2.1.2
Simplify the expression.
Tap for more steps...
Step 3.4.2.1.2.1
Multiply -3 by -1.
x=1+32
y=-1
Step 3.4.2.1.2.2
Add 1 and 3.
x=42
y=-1
Step 3.4.2.1.2.3
Divide 4 by 2.
x=2
y=-1
x=2
y=-1
x=2
y=-1
x=2
y=-1
x=2
y=-1
Step 3.5
List all of the solutions.
x=2,y=-1
x=2,y=-1
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay