Examples
S([abc])=[2a-6b+6ca+2b+c2a+b+2c]S⎛⎜⎝⎡⎢⎣abc⎤⎥⎦⎞⎟⎠=⎡⎢⎣2a−6b+6ca+2b+c2a+b+2c⎤⎥⎦
Step 1
The transformation defines a map from ℝ3 to ℝ3. To prove the transformation is linear, the transformation must preserve scalar multiplication, addition, and the zero vector.
S: ℝ3→ℝ3
Step 2
First prove the transform preserves this property.
S(x+y)=S(x)+S(y)
Step 3
Set up two matrices to test the addition property is preserved for S.
S([x1x2x3]+[y1y2y3])
Step 4
Add the two matrices.
S[x1+y1x2+y2x3+y3]
Step 5
Apply the transformation to the vector.
S(x+y)=[2(x1+y1)-6(x2+y2)+6(x3+y3)x1+y1+2(x2+y2)+x3+y32(x1+y1)+x2+y2+2(x3+y3)]
Step 6
Step 6.1
Rearrange 2(x1+y1)-6(x2+y2)+6(x3+y3).
S(x+y)=[2x1-6x2+6x3+2y1-6y2+6y3x1+y1+2(x2+y2)+x3+y32(x1+y1)+x2+y2+2(x3+y3)]
Step 6.2
Rearrange x1+y1+2(x2+y2)+x3+y3.
S(x+y)=[2x1-6x2+6x3+2y1-6y2+6y3x1+2x2+x3+y1+2y2+y32(x1+y1)+x2+y2+2(x3+y3)]
Step 6.3
Rearrange 2(x1+y1)+x2+y2+2(x3+y3).
S(x+y)=[2x1-6x2+6x3+2y1-6y2+6y3x1+2x2+x3+y1+2y2+y32x1+x2+2x3+2y1+y2+2y3]
S(x+y)=[2x1-6x2+6x3+2y1-6y2+6y3x1+2x2+x3+y1+2y2+y32x1+x2+2x3+2y1+y2+2y3]
Step 7
Break the result into two matrices by grouping the variables.
S(x+y)=[2x1-6x2+6x3x1+2x2+x32x1+x2+2x3]+[2y1-6y2+6y3y1+2y2+y32y1+y2+2y3]
Step 8
The addition property of the transformation holds true.
S(x+y)=S(x)+S(y)
Step 9
For a transformation to be linear, it must maintain scalar multiplication.
S(px)=T(p[abc])
Step 10
Step 10.1
Multiply p by each element in the matrix.
S(px)=S([papbpc])
Step 10.2
Apply the transformation to the vector.
S(px)=[2((pa)-6(pb)+6(pc))(pa)+2(pb)+pc2(pa+pb+2(pc))]
Step 10.3
Simplify each element in the matrix.
Step 10.3.1
Rearrange 2((pa)-6(pb)+6(pc)).
S(px)=[2ap-12bp+12cp(pa)+2(pb)+pc2(pa+pb+2(pc))]
Step 10.3.2
Rearrange (pa)+2(pb)+pc.
S(px)=[2ap-12bp+12cpap+2bp+cp2(pa+pb+2(pc))]
Step 10.3.3
Rearrange 2(pa+pb+2(pc)).
S(px)=[2ap-12bp+12cpap+2bp+cp2ap+2bp+4cp]
S(px)=[2ap-12bp+12cpap+2bp+cp2ap+2bp+4cp]
Step 10.4
Factor each element of the matrix.
Step 10.4.1
Factor element 0,0 by multiplying 2ap-12bp+12cp.
S(px)=[p(2a-12b+12c)ap+2bp+cp2ap+2bp+4cp]
Step 10.4.2
Factor element 1,0 by multiplying ap+2bp+cp.
S(px)=[p(2a-12b+12c)p(a+2b+c)2ap+2bp+4cp]
Step 10.4.3
Factor element 2,0 by multiplying 2ap+2bp+4cp.
S(px)=[p(2a-12b+12c)p(a+2b+c)p(2a+2b+4c)]
S(px)=[p(2a-12b+12c)p(a+2b+c)p(2a+2b+4c)]
S(px)=[p(2a-12b+12c)p(a+2b+c)p(2a+2b+4c)]
Step 11
The second property of linear transformations is preserved in this transformation.
S(p[abc])=pS(x)
Step 12
For the transformation to be linear, the zero vector must be preserved.
S(0)=0
Step 13
Apply the transformation to the vector.
S(0)=[2(0)-6⋅0+6(0)(0)+2(0)+02(0)+0+2(0)]
Step 14
Step 14.1
Rearrange 2(0)-6⋅0+6(0).
S(0)=[0(0)+2(0)+02(0)+0+2(0)]
Step 14.2
Rearrange (0)+2(0)+0.
S(0)=[002(0)+0+2(0)]
Step 14.3
Rearrange 2(0)+0+2(0).
S(0)=[000]
S(0)=[000]
Step 15
The zero vector is preserved by the transformation.
S(0)=0
Step 16
Since all three properties of linear transformations are not met, this is not a linear transformation.
Linear Transformation