Examples

Find the Maximum/Minimum Value
f(x)=x2-5x+6f(x)=x25x+6
Step 1
The minimum of a quadratic function occurs at x=-b2ax=b2a. If aa is positive, the minimum value of the function is f(-b2a)f(b2a).
fminfminx=ax2+bx+cx=ax2+bx+c occurs at x=-b2ax=b2a
Step 2
Find the value of x=-b2ax=b2a.
Tap for more steps...
Step 2.1
Substitute in the values of aa and bb.
x=--52(1)x=52(1)
Step 2.2
Remove parentheses.
x=--52(1)x=52(1)
Step 2.3
Simplify --52(1)52(1).
Tap for more steps...
Step 2.3.1
Multiply 22 by 11.
x=--52x=52
Step 2.3.2
Move the negative in front of the fraction.
x=--52x=52
Step 2.3.3
Multiply --5252.
Tap for more steps...
Step 2.3.3.1
Multiply -11 by -11.
x=1(52)x=1(52)
Step 2.3.3.2
Multiply 5252 by 11.
x=52x=52
x=52x=52
x=52x=52
x=52x=52
Step 3
Evaluate f(52)f(52).
Tap for more steps...
Step 3.1
Replace the variable xx with 5252 in the expression.
f(52)=(52)2-5(52)+6f(52)=(52)25(52)+6
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Apply the product rule to 5252.
f(52)=5222-5(52)+6f(52)=52225(52)+6
Step 3.2.1.2
Raise 55 to the power of 22.
f(52)=2522-5(52)+6f(52)=25225(52)+6
Step 3.2.1.3
Raise 22 to the power of 22.
f(52)=254-5(52)+6f(52)=2545(52)+6
Step 3.2.1.4
Multiply -5(52)5(52).
Tap for more steps...
Step 3.2.1.4.1
Combine -55 and 5252.
f(52)=254+-552+6f(52)=254+552+6
Step 3.2.1.4.2
Multiply -55 by 55.
f(52)=254+-252+6f(52)=254+252+6
f(52)=254+-252+6f(52)=254+252+6
Step 3.2.1.5
Move the negative in front of the fraction.
f(52)=254-252+6f(52)=254252+6
f(52)=254-252+6f(52)=254252+6
Step 3.2.2
Find the common denominator.
Tap for more steps...
Step 3.2.2.1
Multiply 252252 by 2222.
f(52)=254-(25222)+6f(52)=254(25222)+6
Step 3.2.2.2
Multiply 252252 by 2222.
f(52)=254-25222+6f(52)=25425222+6
Step 3.2.2.3
Write 66 as a fraction with denominator 11.
f(52)=254-25222+61f(52)=25425222+61
Step 3.2.2.4
Multiply 6161 by 4444.
f(52)=254-25222+6144f(52)=25425222+6144
Step 3.2.2.5
Multiply 6161 by 4444.
f(52)=254-25222+644f(52)=25425222+644
Step 3.2.2.6
Multiply 22 by 22.
f(52)=254-2524+644f(52)=2542524+644
f(52)=254-2524+644f(52)=2542524+644
Step 3.2.3
Combine the numerators over the common denominator.
f(52)=25-252+644f(52)=25252+644
Step 3.2.4
Simplify each term.
Tap for more steps...
Step 3.2.4.1
Multiply -2525 by 22.
f(52)=25-50+644f(52)=2550+644
Step 3.2.4.2
Multiply 66 by 44.
f(52)=25-50+244f(52)=2550+244
f(52)=25-50+244f(52)=2550+244
Step 3.2.5
Simplify the expression.
Tap for more steps...
Step 3.2.5.1
Subtract 5050 from 2525.
f(52)=-25+244f(52)=25+244
Step 3.2.5.2
Add -2525 and 2424.
f(52)=-14f(52)=14
Step 3.2.5.3
Move the negative in front of the fraction.
f(52)=-14f(52)=14
f(52)=-14f(52)=14
Step 3.2.6
The final answer is -1414.
-1414
-1414
-1414
Step 4
Use the xx and yy values to find where the minimum occurs.
(52,-14)(52,14)
Step 5
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay