Examples
f(x)=x2-5x+6f(x)=x2−5x+6
Step 1
The minimum of a quadratic function occurs at x=-b2ax=−b2a. If aa is positive, the minimum value of the function is f(-b2a)f(−b2a).
fminfminx=ax2+bx+cx=ax2+bx+c occurs at x=-b2ax=−b2a
Step 2
Step 2.1
Substitute in the values of aa and bb.
x=--52(1)x=−−52(1)
Step 2.2
Remove parentheses.
x=--52(1)x=−−52(1)
Step 2.3
Simplify --52(1)−−52(1).
Step 2.3.1
Multiply 22 by 11.
x=--52x=−−52
Step 2.3.2
Move the negative in front of the fraction.
x=--52x=−−52
Step 2.3.3
Multiply --52−−52.
Step 2.3.3.1
Multiply -1−1 by -1−1.
x=1(52)x=1(52)
Step 2.3.3.2
Multiply 5252 by 11.
x=52x=52
x=52x=52
x=52x=52
x=52x=52
Step 3
Step 3.1
Replace the variable xx with 5252 in the expression.
f(52)=(52)2-5(52)+6f(52)=(52)2−5(52)+6
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Apply the product rule to 5252.
f(52)=5222-5(52)+6f(52)=5222−5(52)+6
Step 3.2.1.2
Raise 55 to the power of 22.
f(52)=2522-5(52)+6f(52)=2522−5(52)+6
Step 3.2.1.3
Raise 22 to the power of 22.
f(52)=254-5(52)+6f(52)=254−5(52)+6
Step 3.2.1.4
Multiply -5(52)−5(52).
Step 3.2.1.4.1
Combine -5−5 and 5252.
f(52)=254+-5⋅52+6f(52)=254+−5⋅52+6
Step 3.2.1.4.2
Multiply -5−5 by 55.
f(52)=254+-252+6f(52)=254+−252+6
f(52)=254+-252+6f(52)=254+−252+6
Step 3.2.1.5
Move the negative in front of the fraction.
f(52)=254-252+6f(52)=254−252+6
f(52)=254-252+6f(52)=254−252+6
Step 3.2.2
Find the common denominator.
Step 3.2.2.1
Multiply 252252 by 2222.
f(52)=254-(252⋅22)+6f(52)=254−(252⋅22)+6
Step 3.2.2.2
Multiply 252252 by 2222.
f(52)=254-25⋅22⋅2+6f(52)=254−25⋅22⋅2+6
Step 3.2.2.3
Write 66 as a fraction with denominator 11.
f(52)=254-25⋅22⋅2+61f(52)=254−25⋅22⋅2+61
Step 3.2.2.4
Multiply 6161 by 4444.
f(52)=254-25⋅22⋅2+61⋅44f(52)=254−25⋅22⋅2+61⋅44
Step 3.2.2.5
Multiply 6161 by 4444.
f(52)=254-25⋅22⋅2+6⋅44f(52)=254−25⋅22⋅2+6⋅44
Step 3.2.2.6
Multiply 22 by 22.
f(52)=254-25⋅24+6⋅44f(52)=254−25⋅24+6⋅44
f(52)=254-25⋅24+6⋅44f(52)=254−25⋅24+6⋅44
Step 3.2.3
Combine the numerators over the common denominator.
f(52)=25-25⋅2+6⋅44f(52)=25−25⋅2+6⋅44
Step 3.2.4
Simplify each term.
Step 3.2.4.1
Multiply -25−25 by 22.
f(52)=25-50+6⋅44f(52)=25−50+6⋅44
Step 3.2.4.2
Multiply 66 by 44.
f(52)=25-50+244f(52)=25−50+244
f(52)=25-50+244f(52)=25−50+244
Step 3.2.5
Simplify the expression.
Step 3.2.5.1
Subtract 5050 from 2525.
f(52)=-25+244f(52)=−25+244
Step 3.2.5.2
Add -25−25 and 2424.
f(52)=-14f(52)=−14
Step 3.2.5.3
Move the negative in front of the fraction.
f(52)=-14f(52)=−14
f(52)=-14f(52)=−14
Step 3.2.6
The final answer is -14−14.
-14−14
-14−14
-14−14
Step 4
Use the xx and yy values to find where the minimum occurs.
(52,-14)(52,−14)
Step 5