Examples
x2-4x+4x2−4x+4
Step 1
Step 1.1
The discriminant of a quadratic is the expression inside the radical of the quadratic formula.
b2-4(ac)b2−4(ac)
Step 1.2
Substitute in the values of aa, bb, and cc.
(-4)2-4(1⋅4)(−4)2−4(1⋅4)
Step 1.3
Evaluate the result to find the discriminant.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Raise -4−4 to the power of 22.
16-4(1⋅4)16−4(1⋅4)
Step 1.3.1.2
Multiply -4(1⋅4)−4(1⋅4).
Step 1.3.1.2.1
Multiply 44 by 11.
16-4⋅416−4⋅4
Step 1.3.1.2.2
Multiply -4−4 by 44.
16-1616−16
16-1616−16
16-1616−16
Step 1.3.2
Subtract 1616 from 1616.
00
00
00
Step 2
A perfect square number is an integer that is the square of another integer. √0=0√0=0, which is an integer number.
√0=0√0=0
Step 3
Since 00 is the square of 00, it is a perfect square number.
00 is a perfect square number
Step 4
The polynomial x2-4x+4x2−4x+4 is not prime because the discriminant is a perfect square number.
Not prime