Examples
22x+4=3
Step 1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(22x+4)=ln(3)
Step 2
Expand ln(22x+4) by moving 2x+4 outside the logarithm.
(2x+4)ln(2)=ln(3)
Step 3
Step 3.1
Apply the distributive property.
2xln(2)+4ln(2)=ln(3)
2xln(2)+4ln(2)=ln(3)
Step 4
Move all the terms containing a logarithm to the left side of the equation.
2xln(2)+4ln(2)−ln(3)=0
Step 5
Step 5.1
Subtract 4ln(2) from both sides of the equation.
2xln(2)−ln(3)=−4ln(2)
Step 5.2
Add ln(3) to both sides of the equation.
2xln(2)=−4ln(2)+ln(3)
2xln(2)=−4ln(2)+ln(3)
Step 6
Step 6.1
Divide each term in 2xln(2)=−4ln(2)+ln(3) by 2ln(2).
2xln(2)2ln(2)=−4ln(2)2ln(2)+ln(3)2ln(2)
Step 6.2
Simplify the left side.
Step 6.2.1
Cancel the common factor of 2.
Step 6.2.1.1
Cancel the common factor.
2xln(2)2ln(2)=−4ln(2)2ln(2)+ln(3)2ln(2)
Step 6.2.1.2
Rewrite the expression.
xln(2)ln(2)=−4ln(2)2ln(2)+ln(3)2ln(2)
xln(2)ln(2)=−4ln(2)2ln(2)+ln(3)2ln(2)
Step 6.2.2
Cancel the common factor of ln(2).
Step 6.2.2.1
Cancel the common factor.
xln(2)ln(2)=−4ln(2)2ln(2)+ln(3)2ln(2)
Step 6.2.2.2
Divide x by 1.
x=−4ln(2)2ln(2)+ln(3)2ln(2)
x=−4ln(2)2ln(2)+ln(3)2ln(2)
x=−4ln(2)2ln(2)+ln(3)2ln(2)
Step 6.3
Simplify the right side.
Step 6.3.1
Simplify each term.
Step 6.3.1.1
Cancel the common factor of −4 and 2.
Step 6.3.1.1.1
Factor 2 out of −4ln(2).
x=2(−2ln(2))2ln(2)+ln(3)2ln(2)
Step 6.3.1.1.2
Cancel the common factors.
Step 6.3.1.1.2.1
Factor 2 out of 2ln(2).
x=2(−2ln(2))2ln(2)+ln(3)2ln(2)
Step 6.3.1.1.2.2
Cancel the common factor.
x=2(−2ln(2))2ln(2)+ln(3)2ln(2)
Step 6.3.1.1.2.3
Rewrite the expression.
x=−2ln(2)ln(2)+ln(3)2ln(2)
x=−2ln(2)ln(2)+ln(3)2ln(2)
x=−2ln(2)ln(2)+ln(3)2ln(2)
Step 6.3.1.2
Cancel the common factor of ln(2).
Step 6.3.1.2.1
Cancel the common factor.
x=−2ln(2)ln(2)+ln(3)2ln(2)
Step 6.3.1.2.2
Divide −2 by 1.
x=−2+ln(3)2ln(2)
x=−2+ln(3)2ln(2)
x=−2+ln(3)2ln(2)
x=−2+ln(3)2ln(2)
x=−2+ln(3)2ln(2)
Step 7
The result can be shown in multiple forms.
Exact Form:
x=−2+ln(3)2ln(2)
Decimal Form:
x=−1.20751874…