Examples

Find the Eigenvectors/Eigenspace
A=[350750110]A=350750110
Step 1
Find the eigenvalues.
Tap for more steps...
Step 1.1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI3)p(λ)=determinant(AλI3)
Step 1.2
The identity matrix or unit matrix of size 33 is the 3×33×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]100010001
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI3)p(λ)=determinant(AλI3).
Tap for more steps...
Step 1.3.1
Substitute [350750110]350750110 for AA.
p(λ)=determinant([350750110]-λI3)p(λ)=determinant350750110λI3
Step 1.3.2
Substitute [100010001]100010001 for I3I3.
p(λ)=determinant([350750110]-λ[100010001])p(λ)=determinant350750110λ100010001
p(λ)=determinant([350750110]-λ[100010001])p(λ)=determinant350750110λ100010001
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Simplify each term.
Tap for more steps...
Step 1.4.1.1
Multiply -λλ by each element of the matrix.
p(λ)=determinant([350750110]+[-λ1-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ1λ0λ0λ0λ1λ0λ0λ0λ1
Step 1.4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 1.4.1.2.1
Multiply -11 by 11.
p(λ)=determinant([350750110]+[-λ-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λλ0λ0λ0λ1λ0λ0λ0λ1
Step 1.4.1.2.2
Multiply -λ0λ0.
Tap for more steps...
Step 1.4.1.2.2.1
Multiply 00 by -11.
p(λ)=determinant([350750110]+[-λ0λ-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ0λλ0λ0λ1λ0λ0λ0λ1
Step 1.4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([350750110]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ0λ0λ0λ1λ0λ0λ0λ1
p(λ)=determinant([350750110]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ0λ0λ0λ1λ0λ0λ0λ1
Step 1.4.1.2.3
Multiply -λ0λ0.
Tap for more steps...
Step 1.4.1.2.3.1
Multiply 00 by -11.
p(λ)=determinant([350750110]+[-λ00λ-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ00λλ0λ1λ0λ0λ0λ1
Step 1.4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([350750110]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ00λ0λ1λ0λ0λ0λ1
p(λ)=determinant([350750110]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ00λ0λ1λ0λ0λ0λ1
Step 1.4.1.2.4
Multiply -λ0λ0.
Tap for more steps...
Step 1.4.1.2.4.1
Multiply 00 by -11.
p(λ)=determinant([350750110]+[-λ000λ-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ000λλ1λ0λ0λ0λ1
Step 1.4.1.2.4.2
Multiply 00 by λλ.
p(λ)=determinant([350750110]+[-λ000-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ000λ1λ0λ0λ0λ1
p(λ)=determinant([350750110]+[-λ000-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ000λ1λ0λ0λ0λ1
Step 1.4.1.2.5
Multiply -11 by 11.
p(λ)=determinant([350750110]+[-λ000-λ-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ000λλ0λ0λ0λ1
Step 1.4.1.2.6
Multiply -λ0λ0.
Tap for more steps...
Step 1.4.1.2.6.1
Multiply 00 by -11.
p(λ)=determinant([350750110]+[-λ000-λ0λ-λ0-λ0-λ1])p(λ)=determinant350750110+λ000λ0λλ0λ0λ1
Step 1.4.1.2.6.2
Multiply 00 by λλ.
p(λ)=determinant([350750110]+[-λ000-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ000λ0λ0λ0λ1
p(λ)=determinant([350750110]+[-λ000-λ0-λ0-λ0-λ1])p(λ)=determinant350750110+λ000λ0λ0λ0λ1
Step 1.4.1.2.7
Multiply -λ0λ0.
Tap for more steps...
Step 1.4.1.2.7.1
Multiply 00 by -11.
p(λ)=determinant([350750110]+[-λ000-λ00λ-λ0-λ1])p(λ)=determinant350750110+λ000λ00λλ0λ1
Step 1.4.1.2.7.2
Multiply 00 by λλ.
p(λ)=determinant([350750110]+[-λ000-λ00-λ0-λ1])p(λ)=determinant350750110+λ000λ00λ0λ1
p(λ)=determinant([350750110]+[-λ000-λ00-λ0-λ1])p(λ)=determinant350750110+λ000λ00λ0λ1
Step 1.4.1.2.8
Multiply -λ0λ0.
Tap for more steps...
Step 1.4.1.2.8.1
Multiply 00 by -11.
p(λ)=determinant([350750110]+[-λ000-λ000λ-λ1])p(λ)=determinant350750110+λ000λ000λλ1
Step 1.4.1.2.8.2
Multiply 00 by λλ.
p(λ)=determinant([350750110]+[-λ000-λ000-λ1])p(λ)=determinant350750110+λ000λ000λ1
p(λ)=determinant([350750110]+[-λ000-λ000-λ1])p(λ)=determinant350750110+λ000λ000λ1
Step 1.4.1.2.9
Multiply -11 by 11.
p(λ)=determinant([350750110]+[-λ000-λ000-λ])p(λ)=determinant350750110+λ000λ000λ
p(λ)=determinant([350750110]+[-λ000-λ000-λ])p(λ)=determinant350750110+λ000λ000λ
p(λ)=determinant([350750110]+[-λ000-λ000-λ])p(λ)=determinant350750110+λ000λ000λ
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[3-λ5+00+07+05-λ0+01+01+00-λ]p(λ)=determinant3λ5+00+07+05λ0+01+01+00λ
Step 1.4.3
Simplify each element.
Tap for more steps...
Step 1.4.3.1
Add 55 and 00.
p(λ)=determinant[3-λ50+07+05-λ0+01+01+00-λ]p(λ)=determinant3λ50+07+05λ0+01+01+00λ
Step 1.4.3.2
Add 00 and 00.
p(λ)=determinant[3-λ507+05-λ0+01+01+00-λ]p(λ)=determinant3λ507+05λ0+01+01+00λ
Step 1.4.3.3
Add 77 and 00.
p(λ)=determinant[3-λ5075-λ0+01+01+00-λ]p(λ)=determinant3λ5075λ0+01+01+00λ
Step 1.4.3.4
Add 00 and 00.
p(λ)=determinant[3-λ5075-λ01+01+00-λ]p(λ)=determinant3λ5075λ01+01+00λ
Step 1.4.3.5
Add 11 and 00.
p(λ)=determinant[3-λ5075-λ011+00-λ]p(λ)=determinant3λ5075λ011+00λ
Step 1.4.3.6
Add 11 and 00.
p(λ)=determinant[3-λ5075-λ0110-λ]p(λ)=determinant3λ5075λ0110λ
Step 1.4.3.7
Subtract λλ from 00.
p(λ)=determinant[3-λ5075-λ011-λ]p(λ)=determinant3λ5075λ011λ
p(λ)=determinant[3-λ5075-λ011-λ]p(λ)=determinant3λ5075λ011λ
p(λ)=determinant[3-λ5075-λ011-λ]p(λ)=determinant3λ5075λ011λ
Step 1.5
Find the determinant.
Tap for more steps...
Step 1.5.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 33 by its cofactor and add.
Tap for more steps...
Step 1.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.1.3
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|75-λ11|75λ11
Step 1.5.1.4
Multiply element a13a13 by its cofactor.
0|75-λ11|075λ11
Step 1.5.1.5
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|3-λ511|3λ511
Step 1.5.1.6
Multiply element a23a23 by its cofactor.
0|3-λ511|03λ511
Step 1.5.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3-λ575-λ|3λ575λ
Step 1.5.1.8
Multiply element a33a33 by its cofactor.
-λ|3-λ575-λ|λ3λ575λ
Step 1.5.1.9
Add the terms together.
p(λ)=0|75-λ11|+0|3-λ511|-λ|3-λ575-λ|p(λ)=075λ11+03λ511λ3λ575λ
p(λ)=0|75-λ11|+0|3-λ511|-λ|3-λ575-λ|p(λ)=075λ11+03λ511λ3λ575λ
Step 1.5.2
Multiply 00 by |75-λ11|75λ11.
p(λ)=0+0|3-λ511|-λ|3-λ575-λ|p(λ)=0+03λ511λ3λ575λ
Step 1.5.3
Multiply 00 by |3-λ511|3λ511.
p(λ)=0+0-λ|3-λ575-λ|p(λ)=0+0λ3λ575λ
Step 1.5.4
Evaluate |3-λ575-λ|3λ575λ.
Tap for more steps...
Step 1.5.4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
p(λ)=0+0-λ((3-λ)(5-λ)-75)p(λ)=0+0λ((3λ)(5λ)75)
Step 1.5.4.2
Simplify the determinant.
Tap for more steps...
Step 1.5.4.2.1
Simplify each term.
Tap for more steps...
Step 1.5.4.2.1.1
Expand (3-λ)(5-λ)(3λ)(5λ) using the FOIL Method.
Tap for more steps...
Step 1.5.4.2.1.1.1
Apply the distributive property.
p(λ)=0+0-λ(3(5-λ)-λ(5-λ)-75)p(λ)=0+0λ(3(5λ)λ(5λ)75)
Step 1.5.4.2.1.1.2
Apply the distributive property.
p(λ)=0+0-λ(35+3(-λ)-λ(5-λ)-75)p(λ)=0+0λ(35+3(λ)λ(5λ)75)
Step 1.5.4.2.1.1.3
Apply the distributive property.
p(λ)=0+0-λ(35+3(-λ)-λ5-λ(-λ)-75)p(λ)=0+0λ(35+3(λ)λ5λ(λ)75)
p(λ)=0+0-λ(35+3(-λ)-λ5-λ(-λ)-75)p(λ)=0+0λ(35+3(λ)λ5λ(λ)75)
Step 1.5.4.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 1.5.4.2.1.2.1
Simplify each term.
Tap for more steps...
Step 1.5.4.2.1.2.1.1
Multiply 33 by 55.
p(λ)=0+0-λ(15+3(-λ)-λ5-λ(-λ)-75)p(λ)=0+0λ(15+3(λ)λ5λ(λ)75)
Step 1.5.4.2.1.2.1.2
Multiply -11 by 33.
p(λ)=0+0-λ(15-3λ-λ5-λ(-λ)-75)p(λ)=0+0λ(153λλ5λ(λ)75)
Step 1.5.4.2.1.2.1.3
Multiply 55 by -11.
p(λ)=0+0-λ(15-3λ-5λ-λ(-λ)-75)p(λ)=0+0λ(153λ5λλ(λ)75)
Step 1.5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=0+0-λ(15-3λ-5λ-1-1λλ-75)p(λ)=0+0λ(153λ5λ11λλ75)
Step 1.5.4.2.1.2.1.5
Multiply λλ by λλ by adding the exponents.
Tap for more steps...
Step 1.5.4.2.1.2.1.5.1
Move λλ.
p(λ)=0+0-λ(15-3λ-5λ-1-1(λλ)-75)p(λ)=0+0λ(153λ5λ11(λλ)75)
Step 1.5.4.2.1.2.1.5.2
Multiply λλ by λλ.
p(λ)=0+0-λ(15-3λ-5λ-1-1λ2-75)p(λ)=0+0λ(153λ5λ11λ275)
p(λ)=0+0-λ(15-3λ-5λ-1-1λ2-75)p(λ)=0+0λ(153λ5λ11λ275)
Step 1.5.4.2.1.2.1.6
Multiply -11 by -11.
p(λ)=0+0-λ(15-3λ-5λ+1λ2-75)p(λ)=0+0λ(153λ5λ+1λ275)
Step 1.5.4.2.1.2.1.7
Multiply λ2λ2 by 11.
p(λ)=0+0-λ(15-3λ-5λ+λ2-75)p(λ)=0+0λ(153λ5λ+λ275)
p(λ)=0+0-λ(15-3λ-5λ+λ2-75)p(λ)=0+0λ(153λ5λ+λ275)
Step 1.5.4.2.1.2.2
Subtract 5λ5λ from -3λ3λ.
p(λ)=0+0-λ(15-8λ+λ2-75)p(λ)=0+0λ(158λ+λ275)
p(λ)=0+0-λ(15-8λ+λ2-75)p(λ)=0+0λ(158λ+λ275)
Step 1.5.4.2.1.3
Multiply -77 by 55.
p(λ)=0+0-λ(15-8λ+λ2-35)p(λ)=0+0λ(158λ+λ235)
p(λ)=0+0-λ(15-8λ+λ2-35)p(λ)=0+0λ(158λ+λ235)
Step 1.5.4.2.2
Subtract 3535 from 1515.
p(λ)=0+0-λ(-8λ+λ2-20)p(λ)=0+0λ(8λ+λ220)
Step 1.5.4.2.3
Reorder -8λ8λ and λ2λ2.
p(λ)=0+0-λ(λ2-8λ-20)p(λ)=0+0λ(λ28λ20)
p(λ)=0+0-λ(λ2-8λ-20)p(λ)=0+0λ(λ28λ20)
p(λ)=0+0-λ(λ2-8λ-20)p(λ)=0+0λ(λ28λ20)
Step 1.5.5
Simplify the determinant.
Tap for more steps...
Step 1.5.5.1
Combine the opposite terms in 0+0-λ(λ2-8λ-20)0+0λ(λ28λ20).
Tap for more steps...
Step 1.5.5.1.1
Add 00 and 00.
p(λ)=0-λ(λ2-8λ-20)p(λ)=0λ(λ28λ20)
Step 1.5.5.1.2
Subtract λ(λ2-8λ-20)λ(λ28λ20) from 00.
p(λ)=-λ(λ2-8λ-20)p(λ)=λ(λ28λ20)
p(λ)=-λ(λ2-8λ-20)p(λ)=λ(λ28λ20)
Step 1.5.5.2
Apply the distributive property.
p(λ)=-λλ2-λ(-8λ)-λ-20p(λ)=λλ2λ(8λ)λ20
Step 1.5.5.3
Simplify.
Tap for more steps...
Step 1.5.5.3.1
Multiply λλ by λ2λ2 by adding the exponents.
Tap for more steps...
Step 1.5.5.3.1.1
Move λ2λ2.
p(λ)=-(λ2λ)-λ(-8λ)-λ-20p(λ)=(λ2λ)λ(8λ)λ20
Step 1.5.5.3.1.2
Multiply λ2λ2 by λλ.
Tap for more steps...
Step 1.5.5.3.1.2.1
Raise λλ to the power of 11.
p(λ)=-(λ2λ1)-λ(-8λ)-λ-20p(λ)=(λ2λ1)λ(8λ)λ20
Step 1.5.5.3.1.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
p(λ)=-λ2+1-λ(-8λ)-λ-20p(λ)=λ2+1λ(8λ)λ20
p(λ)=-λ2+1-λ(-8λ)-λ-20p(λ)=λ2+1λ(8λ)λ20
Step 1.5.5.3.1.3
Add 22 and 11.
p(λ)=-λ3-λ(-8λ)-λ-20p(λ)=λ3λ(8λ)λ20
p(λ)=-λ3-λ(-8λ)-λ-20p(λ)=λ3λ(8λ)λ20
Step 1.5.5.3.2
Rewrite using the commutative property of multiplication.
p(λ)=-λ3-1-8λλ-λ-20p(λ)=λ318λλλ20
Step 1.5.5.3.3
Multiply -2020 by -11.
p(λ)=-λ3-1-8λλ+20λp(λ)=λ318λλ+20λ
p(λ)=-λ3-1-8λλ+20λp(λ)=λ318λλ+20λ
Step 1.5.5.4
Simplify each term.
Tap for more steps...
Step 1.5.5.4.1
Multiply λλ by λλ by adding the exponents.
Tap for more steps...
Step 1.5.5.4.1.1
Move λλ.
p(λ)=-λ3-1-8(λλ)+20λp(λ)=λ318(λλ)+20λ
Step 1.5.5.4.1.2
Multiply λλ by λλ.
p(λ)=-λ3-1-8λ2+20λp(λ)=λ318λ2+20λ
p(λ)=-λ3-1-8λ2+20λp(λ)=λ318λ2+20λ
Step 1.5.5.4.2
Multiply -11 by -88.
p(λ)=-λ3+8λ2+20λp(λ)=λ3+8λ2+20λ
p(λ)=-λ3+8λ2+20λp(λ)=λ3+8λ2+20λ
p(λ)=-λ3+8λ2+20λp(λ)=λ3+8λ2+20λ
p(λ)=-λ3+8λ2+20λp(λ)=λ3+8λ2+20λ
Step 1.6
Set the characteristic polynomial equal to 00 to find the eigenvalues λλ.
-λ3+8λ2+20λ=0λ3+8λ2+20λ=0
Step 1.7
Solve for λλ.
Tap for more steps...
Step 1.7.1
Factor the left side of the equation.
Tap for more steps...
Step 1.7.1.1
Factor -λλ out of -λ3+8λ2+20λλ3+8λ2+20λ.
Tap for more steps...
Step 1.7.1.1.1
Factor -λλ out of -λ3λ3.
-λλ2+8λ2+20λ=0λλ2+8λ2+20λ=0
Step 1.7.1.1.2
Factor -λλ out of 8λ28λ2.
-λλ2-λ(-8λ)+20λ=0λλ2λ(8λ)+20λ=0
Step 1.7.1.1.3
Factor -λλ out of 20λ20λ.
-λλ2-λ(-8λ)-λ-20=0λλ2λ(8λ)λ20=0
Step 1.7.1.1.4
Factor -λλ out of -λ(λ2)-λ(-8λ)λ(λ2)λ(8λ).
-λ(λ2-8λ)-λ-20=0λ(λ28λ)λ20=0
Step 1.7.1.1.5
Factor -λλ out of -λ(λ2-8λ)-λ(-20)λ(λ28λ)λ(20).
-λ(λ2-8λ-20)=0λ(λ28λ20)=0
-λ(λ2-8λ-20)=0λ(λ28λ20)=0
Step 1.7.1.2
Factor.
Tap for more steps...
Step 1.7.1.2.1
Factor λ2-8λ-20λ28λ20 using the AC method.
Tap for more steps...
Step 1.7.1.2.1.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is -2020 and whose sum is -88.
-10,210,2
Step 1.7.1.2.1.2
Write the factored form using these integers.
-λ((λ-10)(λ+2))=0λ((λ10)(λ+2))=0
-λ((λ-10)(λ+2))=0λ((λ10)(λ+2))=0
Step 1.7.1.2.2
Remove unnecessary parentheses.
-λ(λ-10)(λ+2)=0λ(λ10)(λ+2)=0
-λ(λ-10)(λ+2)=0λ(λ10)(λ+2)=0
-λ(λ-10)(λ+2)=0λ(λ10)(λ+2)=0
Step 1.7.2
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
λ=0λ=0
λ-10=0λ10=0
λ+2=0λ+2=0
Step 1.7.3
Set λλ equal to 00.
λ=0λ=0
Step 1.7.4
Set λ-10λ10 equal to 00 and solve for λλ.
Tap for more steps...
Step 1.7.4.1
Set λ-10λ10 equal to 00.
λ-10=0λ10=0
Step 1.7.4.2
Add 1010 to both sides of the equation.
λ=10λ=10
λ=10λ=10
Step 1.7.5
Set λ+2λ+2 equal to 00 and solve for λλ.
Tap for more steps...
Step 1.7.5.1
Set λ+2λ+2 equal to 00.
λ+2=0λ+2=0
Step 1.7.5.2
Subtract 22 from both sides of the equation.
λ=-2λ=2
λ=-2λ=2
Step 1.7.6
The final solution is all the values that make -λ(λ-10)(λ+2)=0λ(λ10)(λ+2)=0 true.
λ=0,10,-2λ=0,10,2
λ=0,10,-2λ=0,10,2
λ=0,10,-2λ=0,10,2
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where NN is the null space and II is the identity matrix.
εA=N(A-λI3)εA=N(AλI3)
Step 3
Find the eigenvector using the eigenvalue λ=0λ=0.
Tap for more steps...
Step 3.1
Substitute the known values into the formula.
N([350750110]+0[100010001])N350750110+0100010001
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Multiply 00 by each element of the matrix.
[350750110]+[010000000100000001]350750110+010000000100000001
Step 3.2.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 3.2.1.2.1
Multiply 00 by 11.
[350750110]+[00000000100000001]350750110+00000000100000001
Step 3.2.1.2.2
Multiply 00 by 00.
[350750110]+[0000000100000001]350750110+0000000100000001
Step 3.2.1.2.3
Multiply 00 by 00.
[350750110]+[000000100000001]350750110+000000100000001
Step 3.2.1.2.4
Multiply 00 by 00.
[350750110]+[00000100000001]350750110+00000100000001
Step 3.2.1.2.5
Multiply 00 by 11.
[350750110]+[0000000000001]350750110+0000000000001
Step 3.2.1.2.6
Multiply 00 by 00.
[350750110]+[000000000001]350750110+000000000001
Step 3.2.1.2.7
Multiply 00 by 00.
[350750110]+[00000000001]350750110+00000000001
Step 3.2.1.2.8
Multiply 00 by 00.
[350750110]+[0000000001]350750110+0000000001
Step 3.2.1.2.9
Multiply 00 by 11.
[350750110]+[000000000]350750110+000000000
[350750110]+[000000000]350750110+000000000
[350750110]+[000000000]350750110+000000000
Step 3.2.2
Adding any matrix to a null matrix is the matrix itself.
Tap for more steps...
Step 3.2.2.1
Add the corresponding elements.
[3+05+00+07+05+00+01+01+00+0]3+05+00+07+05+00+01+01+00+0
Step 3.2.2.2
Simplify each element.
Tap for more steps...
Step 3.2.2.2.1
Add 33 and 00.
[35+00+07+05+00+01+01+00+0]35+00+07+05+00+01+01+00+0
Step 3.2.2.2.2
Add 55 and 00.
[350+07+05+00+01+01+00+0]350+07+05+00+01+01+00+0
Step 3.2.2.2.3
Add 00 and 00.
[3507+05+00+01+01+00+0]3507+05+00+01+01+00+0
Step 3.2.2.2.4
Add 77 and 00.
[35075+00+01+01+00+0]35075+00+01+01+00+0
Step 3.2.2.2.5
Add 55 and 00.
[350750+01+01+00+0]350750+01+01+00+0
Step 3.2.2.2.6
Add 00 and 00.
[3507501+01+00+0]3507501+01+00+0
Step 3.2.2.2.7
Add 11 and 00.
[35075011+00+0]35075011+00+0
Step 3.2.2.2.8
Add 11 and 00.
[350750110+0]350750110+0
Step 3.2.2.2.9
Add 00 and 00.
[350750110]350750110
[350750110]350750110
[350750110]350750110
[350750110]350750110
Step 3.3
Find the null space when λ=0λ=0.
Tap for more steps...
Step 3.3.1
Write as an augmented matrix for Ax=0Ax=0.
[350075001100]⎢ ⎢350075001100⎥ ⎥
Step 3.3.2
Find the reduced row echelon form.
Tap for more steps...
Step 3.3.2.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
Tap for more steps...
Step 3.3.2.1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
[3353030375001100]⎢ ⎢3353030375001100⎥ ⎥
Step 3.3.2.1.2
Simplify R1R1.
[1530075001100]⎢ ⎢1530075001100⎥ ⎥
[1530075001100]⎢ ⎢1530075001100⎥ ⎥
Step 3.3.2.2
Perform the row operation R2=R2-7R1R2=R27R1 to make the entry at 2,12,1 a 00.
Tap for more steps...
Step 3.3.2.2.1
Perform the row operation R2=R2-7R1R2=R27R1 to make the entry at 2,12,1 a 00.
[153007-715-7(53)0-700-701100]⎢ ⎢ ⎢ ⎢1530077157(53)0700701100⎥ ⎥ ⎥ ⎥
Step 3.3.2.2.2
Simplify R2R2.
[153000-203001100]⎢ ⎢ ⎢153000203001100⎥ ⎥ ⎥
[153000-203001100]⎢ ⎢ ⎢153000203001100⎥ ⎥ ⎥
Step 3.3.2.3
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
Tap for more steps...
Step 3.3.2.3.1
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
[153000-203001-11-530-00-0]⎢ ⎢ ⎢ ⎢15300020300111530000⎥ ⎥ ⎥ ⎥
Step 3.3.2.3.2
Simplify R3R3.
[153000-203000-2300]⎢ ⎢ ⎢ ⎢1530002030002300⎥ ⎥ ⎥ ⎥
[153000-203000-2300]⎢ ⎢ ⎢ ⎢1530002030002300⎥ ⎥ ⎥ ⎥
Step 3.3.2.4
Multiply each element of R2R2 by -320320 to make the entry at 2,22,2 a 11.
Tap for more steps...
Step 3.3.2.4.1
Multiply each element of R2R2 by -320320 to make the entry at 2,22,2 a 11.
[15300-3200-320(-203)-3200-32000-2300]⎢ ⎢ ⎢ ⎢ ⎢153003200320(203)3200320002300⎥ ⎥ ⎥ ⎥ ⎥
Step 3.3.2.4.2
Simplify R2R2.
[1530001000-2300]⎢ ⎢ ⎢15300010002300⎥ ⎥ ⎥
[1530001000-2300]⎢ ⎢ ⎢15300010002300⎥ ⎥ ⎥
Step 3.3.2.5
Perform the row operation R3=R3+23R2R3=R3+23R2 to make the entry at 3,23,2 a 00.
Tap for more steps...
Step 3.3.2.5.1
Perform the row operation R3=R3+23R2R3=R3+23R2 to make the entry at 3,23,2 a 00.
[1530001000+230-23+2310+2300+230]⎢ ⎢ ⎢1530001000+23023+2310+2300+230⎥ ⎥ ⎥
Step 3.3.2.5.2
Simplify R3R3.
[1530001000000]⎢ ⎢1530001000000⎥ ⎥
[1530001000000]⎢ ⎢1530001000000⎥ ⎥
Step 3.3.2.6
Perform the row operation R1=R1-53R2R1=R153R2 to make the entry at 1,21,2 a 00.
Tap for more steps...
Step 3.3.2.6.1
Perform the row operation R1=R1-53R2R1=R153R2 to make the entry at 1,21,2 a 00.
[1-53053-5310-5300-53001000000]⎢ ⎢1530535310530053001000000⎥ ⎥
Step 3.3.2.6.2
Simplify R1R1.
[100001000000]⎢ ⎢100001000000⎥ ⎥
[100001000000]⎢ ⎢100001000000⎥ ⎥
[100001000000]⎢ ⎢100001000000⎥ ⎥
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
x=0x=0
y=0y=0
0=00=0
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[00z]xyz=00z
Step 3.3.5
Write the solution as a linear combination of vectors.
[xyz]=z[001]xyz=z001
Step 3.3.6
Write as a solution set.
{z[001]|zR}z001∣ ∣zR
Step 3.3.7
The solution is the set of vectors created from the free variables of the system.
{[001]}001
{[001]}001
{[001]}001
Step 4
Find the eigenvector using the eigenvalue λ=10λ=10.
Tap for more steps...
Step 4.1
Substitute the known values into the formula.
N([350750110]-10[100010001])N35075011010100010001
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Multiply -1010 by each element of the matrix.
[350750110]+[-101-100-100-100-101-100-100-100-101]350750110+101100100100101100100100101
Step 4.2.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.2.1.2.1
Multiply -1010 by 11.
[350750110]+[-10-100-100-100-101-100-100-100-101]350750110+10100100100101100100100101
Step 4.2.1.2.2
Multiply -1010 by 00.
[350750110]+[-100-100-100-101-100-100-100-101]350750110+100100100101100100100101
Step 4.2.1.2.3
Multiply -1010 by 00.
[350750110]+[-1000-100-101-100-100-100-101]350750110+1000100101100100100101
Step 4.2.1.2.4
Multiply -1010 by 00.
[350750110]+[-10000-101-100-100-100-101]350750110+10000101100100100101
Step 4.2.1.2.5
Multiply -1010 by 11.
[350750110]+[-10000-10-100-100-100-101]350750110+1000010100100100101
Step 4.2.1.2.6
Multiply -1010 by 00.
[350750110]+[-10000-100-100-100-101]350750110+10000100100100101
Step 4.2.1.2.7
Multiply -1010 by 00.
[350750110]+[-10000-1000-100-101]350750110+100001000100101
Step 4.2.1.2.8
Multiply -1010 by 00.
[350750110]+[-10000-10000-101]350750110+1000010000101
Step 4.2.1.2.9
Multiply -1010 by 11.
[350750110]+[-10000-10000-10]350750110+100001000010
[350750110]+[-10000-10000-10]350750110+100001000010
[350750110]+[-10000-10000-10]350750110+100001000010
Step 4.2.2
Add the corresponding elements.
[3-105+00+07+05-100+01+01+00-10]3105+00+07+05100+01+01+0010
Step 4.2.3
Simplify each element.
Tap for more steps...
Step 4.2.3.1
Subtract 1010 from 33.
[-75+00+07+05-100+01+01+00-10]75+00+07+05100+01+01+0010
Step 4.2.3.2
Add 55 and 00.
[-750+07+05-100+01+01+00-10]750+07+05100+01+01+0010
Step 4.2.3.3
Add 00 and 00.
[-7507+05-100+01+01+00-10]7507+05100+01+01+0010
Step 4.2.3.4
Add 77 and 00.
[-75075-100+01+01+00-10]75075100+01+01+0010
Step 4.2.3.5
Subtract 1010 from 55.
[-7507-50+01+01+00-10]750750+01+01+0010
Step 4.2.3.6
Add 00 and 00.
[-7507-501+01+00-10]7507501+01+0010
Step 4.2.3.7
Add 11 and 00.
[-7507-5011+00-10]75075011+0010
Step 4.2.3.8
Add 11 and 00.
[-7507-50110-10]75075011010
Step 4.2.3.9
Subtract 1010 from 00.
[-7507-5011-10]7507501110
[-7507-5011-10]7507501110
[-7507-5011-10]7507501110
Step 4.3
Find the null space when λ=10λ=10.
Tap for more steps...
Step 4.3.1
Write as an augmented matrix for Ax=0Ax=0.
[-75007-50011-100]⎢ ⎢7500750011100⎥ ⎥
Step 4.3.2
Find the reduced row echelon form.
Tap for more steps...
Step 4.3.2.1
Multiply each element of R1R1 by -1717 to make the entry at 1,11,1 a 11.
Tap for more steps...
Step 4.3.2.1.1
Multiply each element of R1R1 by -1717 to make the entry at 1,11,1 a 11.
[-17-7-175-170-1707-50011-100]⎢ ⎢177175170170750011100⎥ ⎥
Step 4.3.2.1.2
Simplify R1R1.
[1-57007-50011-100]⎢ ⎢15700750011100⎥ ⎥
[1-57007-50011-100]⎢ ⎢15700750011100⎥ ⎥
Step 4.3.2.2
Perform the row operation R2=R2-7R1R2=R27R1 to make the entry at 2,12,1 a 00.
Tap for more steps...
Step 4.3.2.2.1
Perform the row operation R2=R2-7R1R2=R27R1 to make the entry at 2,12,1 a 00.
[1-57007-71-5-7(-57)0-700-7011-100]⎢ ⎢ ⎢ ⎢1570077157(57)07007011100⎥ ⎥ ⎥ ⎥
Step 4.3.2.2.2
Simplify R2R2.
[1-5700000011-100]⎢ ⎢15700000011100⎥ ⎥
[1-5700000011-100]⎢ ⎢15700000011100⎥ ⎥
Step 4.3.2.3
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
Tap for more steps...
Step 4.3.2.3.1
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
[1-570000001-11+57-10-00-0]⎢ ⎢ ⎢157000000111+5710000⎥ ⎥ ⎥
Step 4.3.2.3.2
Simplify R3R3.
[1-570000000127-100]⎢ ⎢ ⎢1570000000127100⎥ ⎥ ⎥
[1-570000000127-100]⎢ ⎢ ⎢1570000000127100⎥ ⎥ ⎥
Step 4.3.2.4
Swap R3R3 with R2R2 to put a nonzero entry at 2,22,2.
[1-57000127-1000000]⎢ ⎢ ⎢1570001271000000⎥ ⎥ ⎥
Step 4.3.2.5
Multiply each element of R2R2 by 712712 to make the entry at 2,22,2 a 11.
Tap for more steps...
Step 4.3.2.5.1
Multiply each element of R2R2 by 712712 to make the entry at 2,22,2 a 11.
[1-57007120712127712-1071200000]⎢ ⎢ ⎢1570071207121277121071200000⎥ ⎥ ⎥
Step 4.3.2.5.2
Simplify R2R2.
[1-570001-35600000]⎢ ⎢ ⎢157000135600000⎥ ⎥ ⎥
[1-570001-35600000]⎢ ⎢ ⎢157000135600000⎥ ⎥ ⎥
Step 4.3.2.6
Perform the row operation R1=R1+57R2R1=R1+57R2 to make the entry at 1,21,2 a 00.
Tap for more steps...
Step 4.3.2.6.1
Perform the row operation R1=R1+57R2R1=R1+57R2 to make the entry at 1,21,2 a 00.
[1+570-57+5710+57(-356)0+57001-35600000]⎢ ⎢ ⎢ ⎢1+57057+5710+57(356)0+5700135600000⎥ ⎥ ⎥ ⎥
Step 4.3.2.6.2
Simplify R1R1.
[10-256001-35600000]⎢ ⎢ ⎢1025600135600000⎥ ⎥ ⎥
[10-256001-35600000]⎢ ⎢ ⎢1025600135600000⎥ ⎥ ⎥
[10-256001-35600000]⎢ ⎢ ⎢1025600135600000⎥ ⎥ ⎥
Step 4.3.3
Use the result matrix to declare the final solution to the system of equations.
x-256z=0x256z=0
y-356z=0y356z=0
0=00=0
Step 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[25z635z6z]xyz=⎢ ⎢25z635z6z⎥ ⎥
Step 4.3.5
Write the solution as a linear combination of vectors.
[xyz]=z[2563561]xyz=z⎢ ⎢2563561⎥ ⎥
Step 4.3.6
Write as a solution set.
{z[2563561]|zR}⎪ ⎪⎪ ⎪z⎢ ⎢2563561⎥ ⎥∣ ∣ ∣zR⎪ ⎪⎪ ⎪
Step 4.3.7
The solution is the set of vectors created from the free variables of the system.
{[2563561]}⎪ ⎪⎪ ⎪⎢ ⎢2563561⎥ ⎥⎪ ⎪⎪ ⎪
{[2563561]}⎪ ⎪⎪ ⎪⎢ ⎢2563561⎥ ⎥⎪ ⎪⎪ ⎪
{[2563561]}⎪ ⎪⎪ ⎪⎢ ⎢2563561⎥ ⎥⎪ ⎪⎪ ⎪
Step 5
Find the eigenvector using the eigenvalue λ=-2λ=2.
Tap for more steps...
Step 5.1
Substitute the known values into the formula.
N([350750110]+2[100010001])N350750110+2100010001
Step 5.2
Simplify.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Multiply 22 by each element of the matrix.
[350750110]+[212020202120202021]350750110+212020202120202021
Step 5.2.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 5.2.1.2.1
Multiply 22 by 11.
[350750110]+[22020202120202021]350750110+22020202120202021
Step 5.2.1.2.2
Multiply 22 by 00.
[350750110]+[2020202120202021]350750110+2020202120202021
Step 5.2.1.2.3
Multiply 22 by 00.
[350750110]+[200202120202021]350750110+200202120202021
Step 5.2.1.2.4
Multiply 22 by 00.
[350750110]+[20002120202021]350750110+20002120202021
Step 5.2.1.2.5
Multiply 22 by 11.
[350750110]+[2000220202021]350750110+2000220202021
Step 5.2.1.2.6
Multiply 22 by 00.
[350750110]+[200020202021]350750110+200020202021
Step 5.2.1.2.7
Multiply 22 by 00.
[350750110]+[20002002021]350750110+20002002021
Step 5.2.1.2.8
Multiply 22 by 00.
[350750110]+[2000200021]350750110+2000200021
Step 5.2.1.2.9
Multiply 22 by 11.
[350750110]+[200020002]350750110+200020002
[350750110]+[200020002]350750110+200020002
[350750110]+[200020002]350750110+200020002
Step 5.2.2
Add the corresponding elements.
[3+25+00+07+05+20+01+01+00+2]3+25+00+07+05+20+01+01+00+2
Step 5.2.3
Simplify each element.
Tap for more steps...
Step 5.2.3.1
Add 33 and 22.
[55+00+07+05+20+01+01+00+2]55+00+07+05+20+01+01+00+2
Step 5.2.3.2
Add 55 and 00.
[550+07+05+20+01+01+00+2]550+07+05+20+01+01+00+2
Step 5.2.3.3
Add 00 and 00.
[5507+05+20+01+01+00+2]5507+05+20+01+01+00+2
Step 5.2.3.4
Add 77 and 00.
[55075+20+01+01+00+2]55075+20+01+01+00+2
Step 5.2.3.5
Add 55 and 22.
[550770+01+01+00+2]550770+01+01+00+2
Step 5.2.3.6
Add 00 and 00.
[5507701+01+00+2]5507701+01+00+2
Step 5.2.3.7
Add 11 and 00.
[55077011+00+2]55077011+00+2
Step 5.2.3.8
Add 11 and 00.
[550770110+2]550770110+2
Step 5.2.3.9
Add 00 and 22.
[550770112]550770112
[550770112]550770112
[550770112]550770112
Step 5.3
Find the null space when λ=-2λ=2.
Tap for more steps...
Step 5.3.1
Write as an augmented matrix for Ax=0Ax=0.
[550077001120]⎢ ⎢550077001120⎥ ⎥
Step 5.3.2
Find the reduced row echelon form.
Tap for more steps...
Step 5.3.2.1
Multiply each element of R1R1 by 1515 to make the entry at 1,11,1 a 11.
Tap for more steps...
Step 5.3.2.1.1
Multiply each element of R1R1 by 1515 to make the entry at 1,11,1 a 11.
[5555050577001120]⎢ ⎢5555050577001120⎥ ⎥
Step 5.3.2.1.2
Simplify R1R1.
[110077001120]⎢ ⎢110077001120⎥ ⎥
[110077001120]⎢ ⎢110077001120⎥ ⎥
Step 5.3.2.2
Perform the row operation R2=R2-7R1R2=R27R1 to make the entry at 2,12,1 a 00.
Tap for more steps...
Step 5.3.2.2.1
Perform the row operation R2=R2-7R1R2=R27R1 to make the entry at 2,12,1 a 00.
[11007-717-710-700-701120]⎢ ⎢11007717710700701120⎥ ⎥
Step 5.3.2.2.2
Simplify R2R2.
[110000001120]⎢ ⎢110000001120⎥ ⎥
[110000001120]⎢ ⎢110000001120⎥ ⎥
Step 5.3.2.3
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
Tap for more steps...
Step 5.3.2.3.1
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
[110000001-11-12-00-0]⎢ ⎢1100000011112000⎥ ⎥
Step 5.3.2.3.2
Simplify R3R3.
[110000000020]⎢ ⎢110000000020⎥ ⎥
[110000000020]⎢ ⎢110000000020⎥ ⎥
Step 5.3.2.4
Swap R3 with R2 to put a nonzero entry at 2,3.
[110000200000]
Step 5.3.2.5
Multiply each element of R2 by 12 to make the entry at 2,3 a 1.
Tap for more steps...
Step 5.3.2.5.1
Multiply each element of R2 by 12 to make the entry at 2,3 a 1.
[1100020222020000]
Step 5.3.2.5.2
Simplify R2.
[110000100000]
[110000100000]
[110000100000]
Step 5.3.3
Use the result matrix to declare the final solution to the system of equations.
x+y=0
z=0
0=0
Step 5.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[-yy0]
Step 5.3.5
Write the solution as a linear combination of vectors.
[xyz]=y[-110]
Step 5.3.6
Write as a solution set.
{y[-110]|yR}
Step 5.3.7
The solution is the set of vectors created from the free variables of the system.
{[-110]}
{[-110]}
{[-110]}
Step 6
The eigenspace of A is the list of the vector space for each eigenvalue.
{[001],[2563561],[-110]}
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay