Examples

Find the Vertex Form
4x2+9y2-16x-18y-11=04x2+9y216x18y11=0
Step 1
Add 1111 to both sides of the equation.
4x2+9y2-16x-18y=114x2+9y216x18y=11
Step 2
Complete the square for 4x2-16x4x216x.
Tap for more steps...
Step 2.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=4a=4
b=-16b=16
c=0c=0
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 2.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 2.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-1624d=1624
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Cancel the common factor of -1616 and 22.
Tap for more steps...
Step 2.3.2.1.1
Factor 22 out of -1616.
d=2-824d=2824
Step 2.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.2.1.2.1
Factor 22 out of 2424.
d=2-82(4)d=282(4)
Step 2.3.2.1.2.2
Cancel the common factor.
d=2-824
Step 2.3.2.1.2.3
Rewrite the expression.
d=-84
d=-84
d=-84
Step 2.3.2.2
Cancel the common factor of -8 and 4.
Tap for more steps...
Step 2.3.2.2.1
Factor 4 out of -8.
d=4-24
Step 2.3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 2.3.2.2.2.1
Factor 4 out of 4.
d=4-24(1)
Step 2.3.2.2.2.2
Cancel the common factor.
d=4-241
Step 2.3.2.2.2.3
Rewrite the expression.
d=-21
Step 2.3.2.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
d=-2
Step 2.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-16)244
Step 2.4.2
Simplify the right side.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Raise -16 to the power of 2.
e=0-25644
Step 2.4.2.1.2
Multiply 4 by 4.
e=0-25616
Step 2.4.2.1.3
Divide 256 by 16.
e=0-116
Step 2.4.2.1.4
Multiply -1 by 16.
e=0-16
e=0-16
Step 2.4.2.2
Subtract 16 from 0.
e=-16
e=-16
e=-16
Step 2.5
Substitute the values of a, d, and e into the vertex form 4(x-2)2-16.
4(x-2)2-16
4(x-2)2-16
Step 3
Substitute 4(x-2)2-16 for 4x2-16x in the equation 4x2+9y2-16x-18y=11.
4(x-2)2-16+9y2-18y=11
Step 4
Move -16 to the right side of the equation by adding 16 to both sides.
4(x-2)2+9y2-18y=11+16
Step 5
Complete the square for 9y2-18y.
Tap for more steps...
Step 5.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=9
b=-18
c=0
Step 5.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 5.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 5.3.1
Substitute the values of a and b into the formula d=b2a.
d=-1829
Step 5.3.2
Simplify the right side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of -18 and 2.
Tap for more steps...
Step 5.3.2.1.1
Factor 2 out of -18.
d=2-929
Step 5.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 5.3.2.1.2.1
Factor 2 out of 29.
d=2-92(9)
Step 5.3.2.1.2.2
Cancel the common factor.
d=2-929
Step 5.3.2.1.2.3
Rewrite the expression.
d=-99
d=-99
d=-99
Step 5.3.2.2
Cancel the common factor of -9 and 9.
Tap for more steps...
Step 5.3.2.2.1
Factor 9 out of -9.
d=9-19
Step 5.3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 5.3.2.2.2.1
Factor 9 out of 9.
d=9-19(1)
Step 5.3.2.2.2.2
Cancel the common factor.
d=9-191
Step 5.3.2.2.2.3
Rewrite the expression.
d=-11
Step 5.3.2.2.2.4
Divide -1 by 1.
d=-1
d=-1
d=-1
d=-1
d=-1
Step 5.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 5.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-18)249
Step 5.4.2
Simplify the right side.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Raise -18 to the power of 2.
e=0-32449
Step 5.4.2.1.2
Multiply 4 by 9.
e=0-32436
Step 5.4.2.1.3
Divide 324 by 36.
e=0-19
Step 5.4.2.1.4
Multiply -1 by 9.
e=0-9
e=0-9
Step 5.4.2.2
Subtract 9 from 0.
e=-9
e=-9
e=-9
Step 5.5
Substitute the values of a, d, and e into the vertex form 9(y-1)2-9.
9(y-1)2-9
9(y-1)2-9
Step 6
Substitute 9(y-1)2-9 for 9y2-18y in the equation 4x2+9y2-16x-18y=11.
4(x-2)2+9(y-1)2-9=11+16
Step 7
Move -9 to the right side of the equation by adding 9 to both sides.
4(x-2)2+9(y-1)2=11+16+9
Step 8
Simplify 11+16+9.
Tap for more steps...
Step 8.1
Add 11 and 16.
4(x-2)2+9(y-1)2=27+9
Step 8.2
Add 27 and 9.
4(x-2)2+9(y-1)2=36
4(x-2)2+9(y-1)2=36
Step 9
Divide each term by 36 to make the right side equal to one.
4(x-2)236+9(y-1)236=3636
Step 10
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(x-2)29+(y-1)24=1
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay