Examples
4x2+9y2-16x-18y-11=04x2+9y2−16x−18y−11=0
Step 1
Add 1111 to both sides of the equation.
4x2+9y2-16x-18y=114x2+9y2−16x−18y=11
Step 2
Step 2.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=4a=4
b=-16b=−16
c=0c=0
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 2.3
Find the value of dd using the formula d=b2ad=b2a.
Step 2.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-162⋅4d=−162⋅4
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Cancel the common factor of -16−16 and 22.
Step 2.3.2.1.1
Factor 22 out of -16−16.
d=2⋅-82⋅4d=2⋅−82⋅4
Step 2.3.2.1.2
Cancel the common factors.
Step 2.3.2.1.2.1
Factor 22 out of 2⋅42⋅4.
d=2⋅-82(4)d=2⋅−82(4)
Step 2.3.2.1.2.2
Cancel the common factor.
d=2⋅-82⋅4
Step 2.3.2.1.2.3
Rewrite the expression.
d=-84
d=-84
d=-84
Step 2.3.2.2
Cancel the common factor of -8 and 4.
Step 2.3.2.2.1
Factor 4 out of -8.
d=4⋅-24
Step 2.3.2.2.2
Cancel the common factors.
Step 2.3.2.2.2.1
Factor 4 out of 4.
d=4⋅-24(1)
Step 2.3.2.2.2.2
Cancel the common factor.
d=4⋅-24⋅1
Step 2.3.2.2.2.3
Rewrite the expression.
d=-21
Step 2.3.2.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
d=-2
Step 2.4
Find the value of e using the formula e=c-b24a.
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-16)24⋅4
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify each term.
Step 2.4.2.1.1
Raise -16 to the power of 2.
e=0-2564⋅4
Step 2.4.2.1.2
Multiply 4 by 4.
e=0-25616
Step 2.4.2.1.3
Divide 256 by 16.
e=0-1⋅16
Step 2.4.2.1.4
Multiply -1 by 16.
e=0-16
e=0-16
Step 2.4.2.2
Subtract 16 from 0.
e=-16
e=-16
e=-16
Step 2.5
Substitute the values of a, d, and e into the vertex form 4(x-2)2-16.
4(x-2)2-16
4(x-2)2-16
Step 3
Substitute 4(x-2)2-16 for 4x2-16x in the equation 4x2+9y2-16x-18y=11.
4(x-2)2-16+9y2-18y=11
Step 4
Move -16 to the right side of the equation by adding 16 to both sides.
4(x-2)2+9y2-18y=11+16
Step 5
Step 5.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=9
b=-18
c=0
Step 5.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 5.3
Find the value of d using the formula d=b2a.
Step 5.3.1
Substitute the values of a and b into the formula d=b2a.
d=-182⋅9
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Cancel the common factor of -18 and 2.
Step 5.3.2.1.1
Factor 2 out of -18.
d=2⋅-92⋅9
Step 5.3.2.1.2
Cancel the common factors.
Step 5.3.2.1.2.1
Factor 2 out of 2⋅9.
d=2⋅-92(9)
Step 5.3.2.1.2.2
Cancel the common factor.
d=2⋅-92⋅9
Step 5.3.2.1.2.3
Rewrite the expression.
d=-99
d=-99
d=-99
Step 5.3.2.2
Cancel the common factor of -9 and 9.
Step 5.3.2.2.1
Factor 9 out of -9.
d=9⋅-19
Step 5.3.2.2.2
Cancel the common factors.
Step 5.3.2.2.2.1
Factor 9 out of 9.
d=9⋅-19(1)
Step 5.3.2.2.2.2
Cancel the common factor.
d=9⋅-19⋅1
Step 5.3.2.2.2.3
Rewrite the expression.
d=-11
Step 5.3.2.2.2.4
Divide -1 by 1.
d=-1
d=-1
d=-1
d=-1
d=-1
Step 5.4
Find the value of e using the formula e=c-b24a.
Step 5.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-18)24⋅9
Step 5.4.2
Simplify the right side.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Raise -18 to the power of 2.
e=0-3244⋅9
Step 5.4.2.1.2
Multiply 4 by 9.
e=0-32436
Step 5.4.2.1.3
Divide 324 by 36.
e=0-1⋅9
Step 5.4.2.1.4
Multiply -1 by 9.
e=0-9
e=0-9
Step 5.4.2.2
Subtract 9 from 0.
e=-9
e=-9
e=-9
Step 5.5
Substitute the values of a, d, and e into the vertex form 9(y-1)2-9.
9(y-1)2-9
9(y-1)2-9
Step 6
Substitute 9(y-1)2-9 for 9y2-18y in the equation 4x2+9y2-16x-18y=11.
4(x-2)2+9(y-1)2-9=11+16
Step 7
Move -9 to the right side of the equation by adding 9 to both sides.
4(x-2)2+9(y-1)2=11+16+9
Step 8
Step 8.1
Add 11 and 16.
4(x-2)2+9(y-1)2=27+9
Step 8.2
Add 27 and 9.
4(x-2)2+9(y-1)2=36
4(x-2)2+9(y-1)2=36
Step 9
Divide each term by 36 to make the right side equal to one.
4(x-2)236+9(y-1)236=3636
Step 10
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(x-2)29+(y-1)24=1