Examples

Find the Vertex Form
x2+y2+2x+2y=1x2+y2+2x+2y=1
Step 1
Complete the square for x2+2xx2+2x.
Tap for more steps...
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=2b=2
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=221d=221
Step 1.3.2
Cancel the common factor of 22.
Tap for more steps...
Step 1.3.2.1
Cancel the common factor.
d=221
Step 1.3.2.2
Rewrite the expression.
d=1
d=1
d=1
Step 1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-2241
Step 1.4.2
Simplify the right side.
Tap for more steps...
Step 1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.1.1
Raise 2 to the power of 2.
e=0-441
Step 1.4.2.1.2
Multiply 4 by 1.
e=0-44
Step 1.4.2.1.3
Cancel the common factor of 4.
Tap for more steps...
Step 1.4.2.1.3.1
Cancel the common factor.
e=0-44
Step 1.4.2.1.3.2
Rewrite the expression.
e=0-11
e=0-11
Step 1.4.2.1.4
Multiply -1 by 1.
e=0-1
e=0-1
Step 1.4.2.2
Subtract 1 from 0.
e=-1
e=-1
e=-1
Step 1.5
Substitute the values of a, d, and e into the vertex form (x+1)2-1.
(x+1)2-1
(x+1)2-1
Step 2
Substitute (x+1)2-1 for x2+2x in the equation x2+y2+2x+2y=1.
(x+1)2-1+y2+2y=1
Step 3
Move -1 to the right side of the equation by adding 1 to both sides.
(x+1)2+y2+2y=1+1
Step 4
Complete the square for y2+2y.
Tap for more steps...
Step 4.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=2
c=0
Step 4.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 4.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 4.3.1
Substitute the values of a and b into the formula d=b2a.
d=221
Step 4.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 4.3.2.1
Cancel the common factor.
d=221
Step 4.3.2.2
Rewrite the expression.
d=1
d=1
d=1
Step 4.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 4.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-2241
Step 4.4.2
Simplify the right side.
Tap for more steps...
Step 4.4.2.1
Simplify each term.
Tap for more steps...
Step 4.4.2.1.1
Raise 2 to the power of 2.
e=0-441
Step 4.4.2.1.2
Multiply 4 by 1.
e=0-44
Step 4.4.2.1.3
Cancel the common factor of 4.
Tap for more steps...
Step 4.4.2.1.3.1
Cancel the common factor.
e=0-44
Step 4.4.2.1.3.2
Rewrite the expression.
e=0-11
e=0-11
Step 4.4.2.1.4
Multiply -1 by 1.
e=0-1
e=0-1
Step 4.4.2.2
Subtract 1 from 0.
e=-1
e=-1
e=-1
Step 4.5
Substitute the values of a, d, and e into the vertex form (y+1)2-1.
(y+1)2-1
(y+1)2-1
Step 5
Substitute (y+1)2-1 for y2+2y in the equation x2+y2+2x+2y=1.
(x+1)2+(y+1)2-1=1+1
Step 6
Move -1 to the right side of the equation by adding 1 to both sides.
(x+1)2+(y+1)2=1+1+1
Step 7
Simplify 1+1+1.
Tap for more steps...
Step 7.1
Add 1 and 1.
(x+1)2+(y+1)2=2+1
Step 7.2
Add 2 and 1.
(x+1)2+(y+1)2=3
(x+1)2+(y+1)2=3
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay