Examples
2(x-1)2-(3y-4)2=252(x−1)2−(3y−4)2=25
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Rewrite (x-1)2(x−1)2 as (x-1)(x-1)(x−1)(x−1).
2((x-1)(x-1))-(3y-4)2=252((x−1)(x−1))−(3y−4)2=25
Step 1.1.2
Expand (x-1)(x-1)(x−1)(x−1) using the FOIL Method.
Step 1.1.2.1
Apply the distributive property.
2(x(x-1)-1(x-1))-(3y-4)2=252(x(x−1)−1(x−1))−(3y−4)2=25
Step 1.1.2.2
Apply the distributive property.
2(x⋅x+x⋅-1-1(x-1))-(3y-4)2=252(x⋅x+x⋅−1−1(x−1))−(3y−4)2=25
Step 1.1.2.3
Apply the distributive property.
2(x⋅x+x⋅-1-1x-1⋅-1)-(3y-4)2=252(x⋅x+x⋅−1−1x−1⋅−1)−(3y−4)2=25
2(x⋅x+x⋅-1-1x-1⋅-1)-(3y-4)2=252(x⋅x+x⋅−1−1x−1⋅−1)−(3y−4)2=25
Step 1.1.3
Simplify and combine like terms.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Multiply xx by xx.
2(x2+x⋅-1-1x-1⋅-1)-(3y-4)2=252(x2+x⋅−1−1x−1⋅−1)−(3y−4)2=25
Step 1.1.3.1.2
Move -1−1 to the left of xx.
2(x2-1⋅x-1x-1⋅-1)-(3y-4)2=252(x2−1⋅x−1x−1⋅−1)−(3y−4)2=25
Step 1.1.3.1.3
Rewrite -1x−1x as -x−x.
2(x2-x-1x-1⋅-1)-(3y-4)2=252(x2−x−1x−1⋅−1)−(3y−4)2=25
Step 1.1.3.1.4
Rewrite -1x−1x as -x−x.
2(x2-x-x-1⋅-1)-(3y-4)2=252(x2−x−x−1⋅−1)−(3y−4)2=25
Step 1.1.3.1.5
Multiply -1−1 by -1−1.
2(x2-x-x+1)-(3y-4)2=252(x2−x−x+1)−(3y−4)2=25
2(x2-x-x+1)-(3y-4)2=252(x2−x−x+1)−(3y−4)2=25
Step 1.1.3.2
Subtract xx from -x−x.
2(x2-2x+1)-(3y-4)2=252(x2−2x+1)−(3y−4)2=25
2(x2-2x+1)-(3y-4)2=252(x2−2x+1)−(3y−4)2=25
Step 1.1.4
Apply the distributive property.
2x2+2(-2x)+2⋅1-(3y-4)2=252x2+2(−2x)+2⋅1−(3y−4)2=25
Step 1.1.5
Simplify.
Step 1.1.5.1
Multiply -2−2 by 22.
2x2-4x+2⋅1-(3y-4)2=252x2−4x+2⋅1−(3y−4)2=25
Step 1.1.5.2
Multiply 22 by 11.
2x2-4x+2-(3y-4)2=252x2−4x+2−(3y−4)2=25
2x2-4x+2-(3y-4)2=252x2−4x+2−(3y−4)2=25
Step 1.1.6
Rewrite (3y-4)2(3y−4)2 as (3y-4)(3y-4)(3y−4)(3y−4).
2x2-4x+2-((3y-4)(3y-4))=252x2−4x+2−((3y−4)(3y−4))=25
Step 1.1.7
Expand (3y-4)(3y-4)(3y−4)(3y−4) using the FOIL Method.
Step 1.1.7.1
Apply the distributive property.
2x2-4x+2-(3y(3y-4)-4(3y-4))=252x2−4x+2−(3y(3y−4)−4(3y−4))=25
Step 1.1.7.2
Apply the distributive property.
2x2-4x+2-(3y(3y)+3y⋅-4-4(3y-4))=252x2−4x+2−(3y(3y)+3y⋅−4−4(3y−4))=25
Step 1.1.7.3
Apply the distributive property.
2x2-4x+2-(3y(3y)+3y⋅-4-4(3y)-4⋅-4)=252x2−4x+2−(3y(3y)+3y⋅−4−4(3y)−4⋅−4)=25
2x2-4x+2-(3y(3y)+3y⋅-4-4(3y)-4⋅-4)=252x2−4x+2−(3y(3y)+3y⋅−4−4(3y)−4⋅−4)=25
Step 1.1.8
Simplify and combine like terms.
Step 1.1.8.1
Simplify each term.
Step 1.1.8.1.1
Rewrite using the commutative property of multiplication.
2x2-4x+2-(3⋅(3y⋅y)+3y⋅-4-4(3y)-4⋅-4)=252x2−4x+2−(3⋅(3y⋅y)+3y⋅−4−4(3y)−4⋅−4)=25
Step 1.1.8.1.2
Multiply yy by yy by adding the exponents.
Step 1.1.8.1.2.1
Move yy.
2x2-4x+2-(3⋅(3(y⋅y))+3y⋅-4-4(3y)-4⋅-4)=252x2−4x+2−(3⋅(3(y⋅y))+3y⋅−4−4(3y)−4⋅−4)=25
Step 1.1.8.1.2.2
Multiply yy by yy.
2x2-4x+2-(3⋅(3y2)+3y⋅-4-4(3y)-4⋅-4)=252x2−4x+2−(3⋅(3y2)+3y⋅−4−4(3y)−4⋅−4)=25
2x2-4x+2-(3⋅(3y2)+3y⋅-4-4(3y)-4⋅-4)=252x2−4x+2−(3⋅(3y2)+3y⋅−4−4(3y)−4⋅−4)=25
Step 1.1.8.1.3
Multiply 33 by 33.
2x2-4x+2-(9y2+3y⋅-4-4(3y)-4⋅-4)=252x2−4x+2−(9y2+3y⋅−4−4(3y)−4⋅−4)=25
Step 1.1.8.1.4
Multiply -4−4 by 33.
2x2-4x+2-(9y2-12y-4(3y)-4⋅-4)=252x2−4x+2−(9y2−12y−4(3y)−4⋅−4)=25
Step 1.1.8.1.5
Multiply 33 by -4−4.
2x2-4x+2-(9y2-12y-12y-4⋅-4)=252x2−4x+2−(9y2−12y−12y−4⋅−4)=25
Step 1.1.8.1.6
Multiply -4−4 by -4−4.
2x2-4x+2-(9y2-12y-12y+16)=252x2−4x+2−(9y2−12y−12y+16)=25
2x2-4x+2-(9y2-12y-12y+16)=252x2−4x+2−(9y2−12y−12y+16)=25
Step 1.1.8.2
Subtract 12y12y from -12y−12y.
2x2-4x+2-(9y2-24y+16)=252x2−4x+2−(9y2−24y+16)=25
2x2-4x+2-(9y2-24y+16)=25
Step 1.1.9
Apply the distributive property.
2x2-4x+2-(9y2)-(-24y)-1⋅16=25
Step 1.1.10
Simplify.
Step 1.1.10.1
Multiply 9 by -1.
2x2-4x+2-9y2-(-24y)-1⋅16=25
Step 1.1.10.2
Multiply -24 by -1.
2x2-4x+2-9y2+24y-1⋅16=25
Step 1.1.10.3
Multiply -1 by 16.
2x2-4x+2-9y2+24y-16=25
2x2-4x+2-9y2+24y-16=25
2x2-4x+2-9y2+24y-16=25
Step 1.2
Simplify the expression.
Step 1.2.1
Subtract 16 from 2.
2x2-4x-9y2+24y-14=25
Step 1.2.2
Move -4x.
2x2-9y2-4x+24y-14=25
2x2-9y2-4x+24y-14=25
2x2-9y2-4x+24y-14=25
Step 2
Step 2.1
Subtract 25 from both sides of the equation.
2x2-9y2-4x+24y-14-25=0
Step 2.2
Subtract 25 from -14.
2x2-9y2-4x+24y-39=0
2x2-9y2-4x+24y-39=0