Examples
3+i-4+2i3+i−4+2i
Step 1
Multiply the numerator and denominator of 3+i-4+2i3+i−4+2i by the conjugate of -4+2i−4+2i to make the denominator real.
3+i-4+2i⋅-4-2i-4-2i3+i−4+2i⋅−4−2i−4−2i
Step 2
Step 2.1
Combine.
(3+i)(-4-2i)(-4+2i)(-4-2i)(3+i)(−4−2i)(−4+2i)(−4−2i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (3+i)(-4-2i)(3+i)(−4−2i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
3(-4-2i)+i(-4-2i)(-4+2i)(-4-2i)3(−4−2i)+i(−4−2i)(−4+2i)(−4−2i)
Step 2.2.1.2
Apply the distributive property.
3⋅-4+3(-2i)+i(-4-2i)(-4+2i)(-4-2i)3⋅−4+3(−2i)+i(−4−2i)(−4+2i)(−4−2i)
Step 2.2.1.3
Apply the distributive property.
3⋅-4+3(-2i)+i⋅-4+i(-2i)(-4+2i)(-4-2i)3⋅−4+3(−2i)+i⋅−4+i(−2i)(−4+2i)(−4−2i)
3⋅-4+3(-2i)+i⋅-4+i(-2i)(-4+2i)(-4-2i)3⋅−4+3(−2i)+i⋅−4+i(−2i)(−4+2i)(−4−2i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 33 by -4−4.
-12+3(-2i)+i⋅-4+i(-2i)(-4+2i)(-4-2i)−12+3(−2i)+i⋅−4+i(−2i)(−4+2i)(−4−2i)
Step 2.2.2.1.2
Multiply -2−2 by 33.
-12-6i+i⋅-4+i(-2i)(-4+2i)(-4-2i)−12−6i+i⋅−4+i(−2i)(−4+2i)(−4−2i)
Step 2.2.2.1.3
Move -4−4 to the left of ii.
-12-6i-4⋅i+i(-2i)(-4+2i)(-4-2i)−12−6i−4⋅i+i(−2i)(−4+2i)(−4−2i)
Step 2.2.2.1.4
Multiply i(-2i)i(−2i).
Step 2.2.2.1.4.1
Raise ii to the power of 11.
-12-6i-4i-2(i1i)(-4+2i)(-4-2i)−12−6i−4i−2(i1i)(−4+2i)(−4−2i)
Step 2.2.2.1.4.2
Raise ii to the power of 11.
-12-6i-4i-2(i1i1)(-4+2i)(-4-2i)−12−6i−4i−2(i1i1)(−4+2i)(−4−2i)
Step 2.2.2.1.4.3
Use the power rule aman=am+naman=am+n to combine exponents.
-12-6i-4i-2i1+1(-4+2i)(-4-2i)−12−6i−4i−2i1+1(−4+2i)(−4−2i)
Step 2.2.2.1.4.4
Add 11 and 11.
-12-6i-4i-2i2(-4+2i)(-4-2i)−12−6i−4i−2i2(−4+2i)(−4−2i)
-12-6i-4i-2i2(-4+2i)(-4-2i)−12−6i−4i−2i2(−4+2i)(−4−2i)
Step 2.2.2.1.5
Rewrite i2i2 as -1−1.
-12-6i-4i-2⋅-1(-4+2i)(-4-2i)−12−6i−4i−2⋅−1(−4+2i)(−4−2i)
Step 2.2.2.1.6
Multiply -2−2 by -1−1.
-12-6i-4i+2(-4+2i)(-4-2i)−12−6i−4i+2(−4+2i)(−4−2i)
-12-6i-4i+2(-4+2i)(-4-2i)−12−6i−4i+2(−4+2i)(−4−2i)
Step 2.2.2.2
Add -12−12 and 22.
-10-6i-4i(-4+2i)(-4-2i)−10−6i−4i(−4+2i)(−4−2i)
Step 2.2.2.3
Subtract 4i4i from -6i−6i.
-10-10i(-4+2i)(-4-2i)−10−10i(−4+2i)(−4−2i)
-10-10i(-4+2i)(-4-2i)
-10-10i(-4+2i)(-4-2i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (-4+2i)(-4-2i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
-10-10i-4(-4-2i)+2i(-4-2i)
Step 2.3.1.2
Apply the distributive property.
-10-10i-4⋅-4-4(-2i)+2i(-4-2i)
Step 2.3.1.3
Apply the distributive property.
-10-10i-4⋅-4-4(-2i)+2i⋅-4+2i(-2i)
-10-10i-4⋅-4-4(-2i)+2i⋅-4+2i(-2i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply -4 by -4.
-10-10i16-4(-2i)+2i⋅-4+2i(-2i)
Step 2.3.2.2
Multiply -2 by -4.
-10-10i16+8i+2i⋅-4+2i(-2i)
Step 2.3.2.3
Multiply -4 by 2.
-10-10i16+8i-8i+2i(-2i)
Step 2.3.2.4
Multiply -2 by 2.
-10-10i16+8i-8i-4ii
Step 2.3.2.5
Raise i to the power of 1.
-10-10i16+8i-8i-4(i1i)
Step 2.3.2.6
Raise i to the power of 1.
-10-10i16+8i-8i-4(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
-10-10i16+8i-8i-4i1+1
Step 2.3.2.8
Add 1 and 1.
-10-10i16+8i-8i-4i2
Step 2.3.2.9
Subtract 8i from 8i.
-10-10i16+0-4i2
Step 2.3.2.10
Add 16 and 0.
-10-10i16-4i2
-10-10i16-4i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
-10-10i16-4⋅-1
Step 2.3.3.2
Multiply -4 by -1.
-10-10i16+4
-10-10i16+4
Step 2.3.4
Add 16 and 4.
-10-10i20
-10-10i20
-10-10i20
Step 3
Step 3.1
Factor 10 out of -10.
10(-1)-10i20
Step 3.2
Factor 10 out of -10i.
10(-1)+10(-i)20
Step 3.3
Factor 10 out of 10(-1)+10(-i).
10(-1-i)20
Step 3.4
Cancel the common factors.
Step 3.4.1
Factor 10 out of 20.
10(-1-i)10⋅2
Step 3.4.2
Cancel the common factor.
10(-1-i)10⋅2
Step 3.4.3
Rewrite the expression.
-1-i2
-1-i2
-1-i2
Step 4
Split the fraction -1-i2 into two fractions.
-12+-i2
Step 5
Step 5.1
Move the negative in front of the fraction.
-12+-i2
Step 5.2
Move the negative in front of the fraction.
-12-i2
-12-i2