Examples

Find the Plane Through (2,6,-8), (-12,-2,-1) Parallel to the Line Through (-2,8,9), (3,0,0)
(2,6,-8)(2,6,8) , (-12,-2,-1)(12,2,1) , (-2,8,9)(2,8,9) , (3,0,0)(3,0,0)
Step 1
Given points C=(-2,8,9)C=(2,8,9) and D=(3,0,0)D=(3,0,0), find a plane containing points A=(2,6,-8)A=(2,6,8) and B=(-12,-2,-1)B=(12,2,1) that is parallel to line CDCD.
A=(2,6,-8)A=(2,6,8)
B=(-12,-2,-1)B=(12,2,1)
C=(-2,8,9)C=(2,8,9)
D=(3,0,0)D=(3,0,0)
Step 2
First, calculate the direction vector of the line through points CC and DD. This can be done by taking the coordinate values of point CC and subtracting them from point DD.
VCD=<xD-xC,yD-yC,zD-zC>VCD=<xDxC,yDyC,zDzC>
Step 3
Replace the xx, yy, and zz values and then simplify to get the direction vector VCDVCD for line CDCD.
VCD=5,-8,-9VCD=5,8,9
Step 4
Calculate the direction vector of a line through points AA and BB using the same method.
VAB=<xB-xA,yB-yA,zB-zA>VAB=<xBxA,yByA,zBzA>
Step 5
Replace the xx, yy, and zz values and then simplify to get the direction vector VABVAB for line ABAB.
VAB=-14,-8,7VAB=14,8,7
Step 6
The solution plane will contain a line that contains points AA and BB and with the direction vector VABVAB. For this plane to be parallel to the line CDCD, find the normal vector of the plane which is also orthogonal to the direction vector of the line CDCD. Calculate the normal vector by finding the cross product VABVABxVCDVCD by finding the determinant of the matrix [ijkxB-xAyB-yAzB-zAxD-xCyD-yCzD-zC]ijkxBxAyByAzBzAxDxCyDyCzDzC.
[ijk-14-875-8-9]ijk1487589
Step 7
Calculate the determinant.
Tap for more steps...
Step 7.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Tap for more steps...
Step 7.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 7.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 7.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-87-8-9|8789
Step 7.1.4
Multiply element a11a11 by its cofactor.
i|-87-8-9|i8789
Step 7.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|-1475-9|14759
Step 7.1.6
Multiply element a12a12 by its cofactor.
-|-1475-9|j14759j
Step 7.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|-14-85-8|14858
Step 7.1.8
Multiply element a13a13 by its cofactor.
|-14-85-8|k14858k
Step 7.1.9
Add the terms together.
i|-87-8-9|-|-1475-9|j+|-14-85-8|ki878914759j+14858k
i|-87-8-9|-|-1475-9|j+|-14-85-8|ki878914759j+14858k
Step 7.2
Evaluate |-87-8-9|8789.
Tap for more steps...
Step 7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
i(-8-9-(-87))-|-1475-9|j+|-14-85-8|ki(89(87))14759j+14858k
Step 7.2.2
Simplify the determinant.
Tap for more steps...
Step 7.2.2.1
Simplify each term.
Tap for more steps...
Step 7.2.2.1.1
Multiply -88 by -99.
i(72-(-87))-|-1475-9|j+|-14-85-8|ki(72(87))14759j+14858k
Step 7.2.2.1.2
Multiply -(-87)(87).
Tap for more steps...
Step 7.2.2.1.2.1
Multiply -88 by 77.
i(72--56)-|-1475-9|j+|-14-85-8|ki(7256)14759j+14858k
Step 7.2.2.1.2.2
Multiply -11 by -5656.
i(72+56)-|-1475-9|j+|-14-85-8|ki(72+56)14759j+14858k
i(72+56)-|-1475-9|j+|-14-85-8|ki(72+56)14759j+14858k
i(72+56)-|-1475-9|j+|-14-85-8|ki(72+56)14759j+14858k
Step 7.2.2.2
Add 7272 and 5656.
i128-|-1475-9|j+|-14-85-8|ki12814759j+14858k
i128-|-1475-9|j+|-14-85-8|ki12814759j+14858k
i128-|-1475-9|j+|-14-85-8|ki12814759j+14858k
Step 7.3
Evaluate |-1475-9|14759.
Tap for more steps...
Step 7.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
i128-(-14-9-57)j+|-14-85-8|ki128(14957)j+14858k
Step 7.3.2
Simplify the determinant.
Tap for more steps...
Step 7.3.2.1
Simplify each term.
Tap for more steps...
Step 7.3.2.1.1
Multiply -1414 by -99.
i128-(126-57)j+|-14-85-8|ki128(12657)j+14858k
Step 7.3.2.1.2
Multiply -55 by 77.
i128-(126-35)j+|-14-85-8|ki128(12635)j+14858k
i128-(126-35)j+|-14-85-8|ki128(12635)j+14858k
Step 7.3.2.2
Subtract 3535 from 126126.
i128-191j+|-14-85-8|ki128191j+14858k
i128-191j+|-14-85-8|ki128191j+14858k
i128-191j+|-14-85-8|ki128191j+14858k
Step 7.4
Evaluate |-14-85-8|14858.
Tap for more steps...
Step 7.4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
i128-191j+(-14-8-5-8)ki128191j+(14858)k
Step 7.4.2
Simplify the determinant.
Tap for more steps...
Step 7.4.2.1
Simplify each term.
Tap for more steps...
Step 7.4.2.1.1
Multiply -1414 by -88.
i128-191j+(112-5-8)ki128191j+(11258)k
Step 7.4.2.1.2
Multiply -55 by -88.
i128-191j+(112+40)ki128191j+(112+40)k
i128-191j+(112+40)ki128191j+(112+40)k
Step 7.4.2.2
Add 112112 and 4040.
i128-191j+152ki128191j+152k
i128-191j+152ki128191j+152k
i128-191j+152ki128191j+152k
Step 7.5
Simplify each term.
Tap for more steps...
Step 7.5.1
Move 128128 to the left of ii.
128i-191j+152k128i191j+152k
Step 7.5.2
Multiply -11 by 9191.
128i-91j+152k128i91j+152k
128i-91j+152k128i91j+152k
128i-91j+152k128i91j+152k
Step 8
Solve the expression (128)x+(-91)y+(152)z(128)x+(91)y+(152)z at point AA since it is on the plane. This is used to calculate the constant in the equation for the plane.
Tap for more steps...
Step 8.1
Simplify each term.
Tap for more steps...
Step 8.1.1
Multiply 128128 by 22.
256+(-91)6+(152)-8256+(91)6+(152)8
Step 8.1.2
Multiply -9191 by 66.
256-546+(152)-8256546+(152)8
Step 8.1.3
Multiply 152152 by -88.
256-546-12162565461216
256-546-12162565461216
Step 8.2
Simplify by subtracting numbers.
Tap for more steps...
Step 8.2.1
Subtract 546546 from 256256.
-290-12162901216
Step 8.2.2
Subtract 12161216 from -290290.
-15061506
-15061506
-15061506
Step 9
Add the constant to find the equation of the plane to be (128)x+(-91)y+(152)z=-1506(128)x+(91)y+(152)z=1506.
(128)x+(-91)y+(152)z=-1506(128)x+(91)y+(152)z=1506
Step 10
Multiply 152152 by zz.
128x-91y+152z=-1506128x91y+152z=1506
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay