Examples
(2,6,-8)(2,6,−8) , (-12,-2,-1)(−12,−2,−1) , (-2,8,9)(−2,8,9) , (3,0,0)(3,0,0)
Step 1
Given points C=(-2,8,9)C=(−2,8,9) and D=(3,0,0)D=(3,0,0), find a plane containing points A=(2,6,-8)A=(2,6,−8) and B=(-12,-2,-1)B=(−12,−2,−1) that is parallel to line CDCD.
A=(2,6,-8)A=(2,6,−8)
B=(-12,-2,-1)B=(−12,−2,−1)
C=(-2,8,9)C=(−2,8,9)
D=(3,0,0)D=(3,0,0)
Step 2
First, calculate the direction vector of the line through points CC and DD. This can be done by taking the coordinate values of point CC and subtracting them from point DD.
VCD=<xD-xC,yD-yC,zD-zC>VCD=<xD−xC,yD−yC,zD−zC>
Step 3
Replace the xx, yy, and zz values and then simplify to get the direction vector VCDVCD for line CDCD.
VCD=⟨5,-8,-9⟩VCD=⟨5,−8,−9⟩
Step 4
Calculate the direction vector of a line through points AA and BB using the same method.
VAB=<xB-xA,yB-yA,zB-zA>VAB=<xB−xA,yB−yA,zB−zA>
Step 5
Replace the xx, yy, and zz values and then simplify to get the direction vector VABVAB for line ABAB.
VAB=⟨-14,-8,7⟩VAB=⟨−14,−8,7⟩
Step 6
The solution plane will contain a line that contains points AA and BB and with the direction vector VABVAB. For this plane to be parallel to the line CDCD, find the normal vector of the plane which is also orthogonal to the direction vector of the line CDCD. Calculate the normal vector by finding the cross product VABVABxVCDVCD by finding the determinant of the matrix [ijkxB-xAyB-yAzB-zAxD-xCyD-yCzD-zC]⎡⎢⎣ijkxB−xAyB−yAzB−zAxD−xCyD−yCzD−zC⎤⎥⎦.
[ijk-14-875-8-9]⎡⎢⎣ijk−14−875−8−9⎤⎥⎦
Step 7
Step 7.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Step 7.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 7.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 7.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-87-8-9|∣∣∣−87−8−9∣∣∣
Step 7.1.4
Multiply element a11a11 by its cofactor.
i|-87-8-9|i∣∣∣−87−8−9∣∣∣
Step 7.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|-1475-9|∣∣∣−1475−9∣∣∣
Step 7.1.6
Multiply element a12a12 by its cofactor.
-|-1475-9|j−∣∣∣−1475−9∣∣∣j
Step 7.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|-14-85-8|∣∣∣−14−85−8∣∣∣
Step 7.1.8
Multiply element a13a13 by its cofactor.
|-14-85-8|k∣∣∣−14−85−8∣∣∣k
Step 7.1.9
Add the terms together.
i|-87-8-9|-|-1475-9|j+|-14-85-8|ki∣∣∣−87−8−9∣∣∣−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
i|-87-8-9|-|-1475-9|j+|-14-85-8|ki∣∣∣−87−8−9∣∣∣−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
Step 7.2
Evaluate |-87-8-9|∣∣∣−87−8−9∣∣∣.
Step 7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
i(-8⋅-9-(-8⋅7))-|-1475-9|j+|-14-85-8|ki(−8⋅−9−(−8⋅7))−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
Step 7.2.2
Simplify the determinant.
Step 7.2.2.1
Simplify each term.
Step 7.2.2.1.1
Multiply -8−8 by -9−9.
i(72-(-8⋅7))-|-1475-9|j+|-14-85-8|ki(72−(−8⋅7))−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
Step 7.2.2.1.2
Multiply -(-8⋅7)−(−8⋅7).
Step 7.2.2.1.2.1
Multiply -8−8 by 77.
i(72--56)-|-1475-9|j+|-14-85-8|ki(72−−56)−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
Step 7.2.2.1.2.2
Multiply -1−1 by -56−56.
i(72+56)-|-1475-9|j+|-14-85-8|ki(72+56)−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
i(72+56)-|-1475-9|j+|-14-85-8|ki(72+56)−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
i(72+56)-|-1475-9|j+|-14-85-8|ki(72+56)−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
Step 7.2.2.2
Add 7272 and 5656.
i⋅128-|-1475-9|j+|-14-85-8|ki⋅128−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
i⋅128-|-1475-9|j+|-14-85-8|ki⋅128−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
i⋅128-|-1475-9|j+|-14-85-8|ki⋅128−∣∣∣−1475−9∣∣∣j+∣∣∣−14−85−8∣∣∣k
Step 7.3
Evaluate |-1475-9|∣∣∣−1475−9∣∣∣.
Step 7.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
i⋅128-(-14⋅-9-5⋅7)j+|-14-85-8|ki⋅128−(−14⋅−9−5⋅7)j+∣∣∣−14−85−8∣∣∣k
Step 7.3.2
Simplify the determinant.
Step 7.3.2.1
Simplify each term.
Step 7.3.2.1.1
Multiply -14−14 by -9−9.
i⋅128-(126-5⋅7)j+|-14-85-8|ki⋅128−(126−5⋅7)j+∣∣∣−14−85−8∣∣∣k
Step 7.3.2.1.2
Multiply -5−5 by 77.
i⋅128-(126-35)j+|-14-85-8|ki⋅128−(126−35)j+∣∣∣−14−85−8∣∣∣k
i⋅128-(126-35)j+|-14-85-8|ki⋅128−(126−35)j+∣∣∣−14−85−8∣∣∣k
Step 7.3.2.2
Subtract 3535 from 126126.
i⋅128-1⋅91j+|-14-85-8|ki⋅128−1⋅91j+∣∣∣−14−85−8∣∣∣k
i⋅128-1⋅91j+|-14-85-8|ki⋅128−1⋅91j+∣∣∣−14−85−8∣∣∣k
i⋅128-1⋅91j+|-14-85-8|ki⋅128−1⋅91j+∣∣∣−14−85−8∣∣∣k
Step 7.4
Evaluate |-14-85-8|∣∣∣−14−85−8∣∣∣.
Step 7.4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
i⋅128-1⋅91j+(-14⋅-8-5⋅-8)ki⋅128−1⋅91j+(−14⋅−8−5⋅−8)k
Step 7.4.2
Simplify the determinant.
Step 7.4.2.1
Simplify each term.
Step 7.4.2.1.1
Multiply -14−14 by -8−8.
i⋅128-1⋅91j+(112-5⋅-8)ki⋅128−1⋅91j+(112−5⋅−8)k
Step 7.4.2.1.2
Multiply -5−5 by -8−8.
i⋅128-1⋅91j+(112+40)ki⋅128−1⋅91j+(112+40)k
i⋅128-1⋅91j+(112+40)ki⋅128−1⋅91j+(112+40)k
Step 7.4.2.2
Add 112112 and 4040.
i⋅128-1⋅91j+152ki⋅128−1⋅91j+152k
i⋅128-1⋅91j+152ki⋅128−1⋅91j+152k
i⋅128-1⋅91j+152ki⋅128−1⋅91j+152k
Step 7.5
Simplify each term.
Step 7.5.1
Move 128128 to the left of ii.
128⋅i-1⋅91j+152k128⋅i−1⋅91j+152k
Step 7.5.2
Multiply -1−1 by 9191.
128i-91j+152k128i−91j+152k
128i-91j+152k128i−91j+152k
128i-91j+152k128i−91j+152k
Step 8
Step 8.1
Simplify each term.
Step 8.1.1
Multiply 128128 by 22.
256+(-91)⋅6+(152)⋅-8256+(−91)⋅6+(152)⋅−8
Step 8.1.2
Multiply -91−91 by 66.
256-546+(152)⋅-8256−546+(152)⋅−8
Step 8.1.3
Multiply 152152 by -8−8.
256-546-1216256−546−1216
256-546-1216256−546−1216
Step 8.2
Simplify by subtracting numbers.
Step 8.2.1
Subtract 546546 from 256256.
-290-1216−290−1216
Step 8.2.2
Subtract 12161216 from -290−290.
-1506−1506
-1506−1506
-1506−1506
Step 9
Add the constant to find the equation of the plane to be (128)x+(-91)y+(152)z=-1506(128)x+(−91)y+(152)z=−1506.
(128)x+(-91)y+(152)z=-1506(128)x+(−91)y+(152)z=−1506
Step 10
Multiply 152152 by zz.
128x-91y+152z=-1506128x−91y+152z=−1506