Examples
3x-y=-43x−y=−4 , x-2y=-3x−2y=−3
Step 1
To find the intersection of the line through a point (p,q,r)(p,q,r) perpendicular to plane P1P1 ax+by+cz=dax+by+cz=d and plane P2P2 ex+fy+gz=hex+fy+gz=h:
1. Find the normal vectors of plane P1P1 and plane P2P2 where the normal vectors are n1=⟨a,b,c⟩n1=⟨a,b,c⟩ and n2=⟨e,f,g⟩n2=⟨e,f,g⟩. Check to see if the dot product is 0.
2. Create a set of parametric equations such that x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct.
3. Substitute these equations into the equation for plane P2P2 such that e(p+at)+f(q+bt)+g(r+ct)=he(p+at)+f(q+bt)+g(r+ct)=h and solve for tt.
4. Using the value of tt, solve the parametric equations x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct for tt to find the intersection (x,y,z)(x,y,z).
Step 2
Step 2.1
P1P1 is 3x-y=-43x−y=−4. Find the normal vector n1=⟨a,b,c⟩n1=⟨a,b,c⟩ from the plane equation of the form ax+by+cz=dax+by+cz=d.
n1=⟨3,-1,0⟩n1=⟨3,−1,0⟩
Step 2.2
P2P2 is x-2y=-3x−2y=−3. Find the normal vector n2=⟨e,f,g⟩n2=⟨e,f,g⟩ from the plane equation of the form ex+fy+gz=hex+fy+gz=h.
n2=⟨1,-2,0⟩n2=⟨1,−2,0⟩
Step 2.3
Calculate the dot product of n1n1 and n2n2 by summing the products of the corresponding xx, yy, and zz values in the normal vectors.
3⋅1-1⋅-2+0⋅03⋅1−1⋅−2+0⋅0
Step 2.4
Simplify the dot product.
Step 2.4.1
Remove parentheses.
3⋅1-1⋅-2+0⋅03⋅1−1⋅−2+0⋅0
Step 2.4.2
Simplify each term.
Step 2.4.2.1
Multiply 33 by 11.
3-1⋅-2+0⋅03−1⋅−2+0⋅0
Step 2.4.2.2
Multiply -1−1 by -2−2.
3+2+0⋅03+2+0⋅0
Step 2.4.2.3
Multiply 00 by 00.
3+2+03+2+0
3+2+03+2+0
Step 2.4.3
Simplify by adding numbers.
Step 2.4.3.1
Add 33 and 22.
5+05+0
Step 2.4.3.2
Add 55 and 00.
55
55
55
55
Step 3
Next, build a set of parametric equations x=p+atx=p+at,y=q+bty=q+bt, and z=r+ctz=r+ct using the origin (0,0,0)(0,0,0) for the point (p,q,r)(p,q,r) and the values from the normal vector 55 for the values of aa, bb, and cc. This set of parametric equations represents the line through the origin that is perpendicular to P1P1 3x-y=-43x−y=−4.
x=0+3⋅tx=0+3⋅t
y=0+-1⋅ty=0+−1⋅t
z=0+0⋅tz=0+0⋅t
Step 4
Substitute the expression for xx, yy, and zz into the equation for P2P2 x-2y=-3x−2y=−3.
(0+3⋅t)-2(0-1⋅t)=-3(0+3⋅t)−2(0−1⋅t)=−3
Step 5
Step 5.1
Simplify (0+3⋅t)-2(0-1⋅t)(0+3⋅t)−2(0−1⋅t).
Step 5.1.1
Combine the opposite terms in (0+3⋅t)-2(0-1⋅t)(0+3⋅t)−2(0−1⋅t).
Step 5.1.1.1
Add 00 and 3⋅t3⋅t.
3⋅t-2(0-1⋅t)=-33⋅t−2(0−1⋅t)=−3
Step 5.1.1.2
Subtract 1⋅t1⋅t from 00.
3⋅t-2(-1⋅t)=-33⋅t−2(−1⋅t)=−3
3⋅t-2(-1⋅t)=-33⋅t−2(−1⋅t)=−3
Step 5.1.2
Simplify each term.
Step 5.1.2.1
Rewrite -1t−1t as -t−t.
3t-2(-t)=-33t−2(−t)=−3
Step 5.1.2.2
Multiply -1−1 by -2−2.
3t+2t=-33t+2t=−3
3t+2t=-33t+2t=−3
Step 5.1.3
Add 3t3t and 2t2t.
5t=-35t=−3
5t=-35t=−3
Step 5.2
Divide each term in 5t=-35t=−3 by 55 and simplify.
Step 5.2.1
Divide each term in 5t=-35t=−3 by 55.
5t5=-355t5=−35
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Cancel the common factor of 55.
Step 5.2.2.1.1
Cancel the common factor.
5t5=-35
Step 5.2.2.1.2
Divide t by 1.
t=-35
t=-35
t=-35
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
Move the negative in front of the fraction.
t=-35
t=-35
t=-35
t=-35
Step 6
Step 6.1
Solve the equation for x.
Step 6.1.1
Remove parentheses.
x=0+3⋅(-1(35))
Step 6.1.2
Remove parentheses.
x=0+3⋅(-35)
Step 6.1.3
Simplify 0+3⋅(-35).
Step 6.1.3.1
Simplify each term.
Step 6.1.3.1.1
Multiply 3(-35).
Step 6.1.3.1.1.1
Multiply -1 by 3.
x=0-3(35)
Step 6.1.3.1.1.2
Combine -3 and 35.
x=0+-3⋅35
Step 6.1.3.1.1.3
Multiply -3 by 3.
x=0+-95
x=0+-95
Step 6.1.3.1.2
Move the negative in front of the fraction.
x=0-95
x=0-95
Step 6.1.3.2
Subtract 95 from 0.
x=-95
x=-95
x=-95
Step 6.2
Solve the equation for y.
Step 6.2.1
Remove parentheses.
y=0-1⋅(-1(35))
Step 6.2.2
Remove parentheses.
y=0-1⋅(-35)
Step 6.2.3
Simplify 0-1⋅(-35).
Step 6.2.3.1
Multiply -1(-35).
Step 6.2.3.1.1
Multiply -1 by -1.
y=0+1(35)
Step 6.2.3.1.2
Multiply 35 by 1.
y=0+35
y=0+35
Step 6.2.3.2
Add 0 and 35.
y=35
y=35
y=35
Step 6.3
Solve the equation for z.
Step 6.3.1
Remove parentheses.
z=0+0⋅(-1(35))
Step 6.3.2
Remove parentheses.
z=0+0⋅(-35)
Step 6.3.3
Simplify 0+0⋅(-35).
Step 6.3.3.1
Multiply 0(-35).
Step 6.3.3.1.1
Multiply -1 by 0.
z=0+0(35)
Step 6.3.3.1.2
Multiply 0 by 35.
z=0+0
z=0+0
Step 6.3.3.2
Add 0 and 0.
z=0
z=0
z=0
Step 6.4
The solved parametric equations for x, y, and z.
x=-95
y=35
z=0
x=-95
y=35
z=0
Step 7
Using the values calculated for x, y, and z, the intersection point is found to be (-95,35,0).
(-95,35,0)