Examples

Find the Intersection of the Line Perpendicular to Plane 1 Through the Origin and Plane 2
3x-y=-43xy=4 , x-2y=-3x2y=3
Step 1
To find the intersection of the line through a point (p,q,r)(p,q,r) perpendicular to plane P1P1 ax+by+cz=dax+by+cz=d and plane P2P2 ex+fy+gz=hex+fy+gz=h:
1. Find the normal vectors of plane P1P1 and plane P2P2 where the normal vectors are n1=a,b,cn1=a,b,c and n2=e,f,gn2=e,f,g. Check to see if the dot product is 0.
2. Create a set of parametric equations such that x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct.
3. Substitute these equations into the equation for plane P2P2 such that e(p+at)+f(q+bt)+g(r+ct)=he(p+at)+f(q+bt)+g(r+ct)=h and solve for tt.
4. Using the value of tt, solve the parametric equations x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct for tt to find the intersection (x,y,z)(x,y,z).
Step 2
Find the normal vectors for each plane and determine if they are perpendicular by calculating the dot product.
Tap for more steps...
Step 2.1
P1P1 is 3x-y=-43xy=4. Find the normal vector n1=a,b,cn1=a,b,c from the plane equation of the form ax+by+cz=dax+by+cz=d.
n1=3,-1,0n1=3,1,0
Step 2.2
P2P2 is x-2y=-3x2y=3. Find the normal vector n2=e,f,gn2=e,f,g from the plane equation of the form ex+fy+gz=hex+fy+gz=h.
n2=1,-2,0n2=1,2,0
Step 2.3
Calculate the dot product of n1n1 and n2n2 by summing the products of the corresponding xx, yy, and zz values in the normal vectors.
31-1-2+003112+00
Step 2.4
Simplify the dot product.
Tap for more steps...
Step 2.4.1
Remove parentheses.
31-1-2+003112+00
Step 2.4.2
Simplify each term.
Tap for more steps...
Step 2.4.2.1
Multiply 33 by 11.
3-1-2+00312+00
Step 2.4.2.2
Multiply -11 by -22.
3+2+003+2+00
Step 2.4.2.3
Multiply 00 by 00.
3+2+03+2+0
3+2+03+2+0
Step 2.4.3
Simplify by adding numbers.
Tap for more steps...
Step 2.4.3.1
Add 33 and 22.
5+05+0
Step 2.4.3.2
Add 55 and 00.
55
55
55
55
Step 3
Next, build a set of parametric equations x=p+atx=p+at,y=q+bty=q+bt, and z=r+ctz=r+ct using the origin (0,0,0)(0,0,0) for the point (p,q,r)(p,q,r) and the values from the normal vector 55 for the values of aa, bb, and cc. This set of parametric equations represents the line through the origin that is perpendicular to P1P1 3x-y=-43xy=4.
x=0+3tx=0+3t
y=0+-1ty=0+1t
z=0+0tz=0+0t
Step 4
Substitute the expression for xx, yy, and zz into the equation for P2P2 x-2y=-3x2y=3.
(0+3t)-2(0-1t)=-3(0+3t)2(01t)=3
Step 5
Solve the equation for tt.
Tap for more steps...
Step 5.1
Simplify (0+3t)-2(0-1t)(0+3t)2(01t).
Tap for more steps...
Step 5.1.1
Combine the opposite terms in (0+3t)-2(0-1t)(0+3t)2(01t).
Tap for more steps...
Step 5.1.1.1
Add 00 and 3t3t.
3t-2(0-1t)=-33t2(01t)=3
Step 5.1.1.2
Subtract 1t1t from 00.
3t-2(-1t)=-33t2(1t)=3
3t-2(-1t)=-33t2(1t)=3
Step 5.1.2
Simplify each term.
Tap for more steps...
Step 5.1.2.1
Rewrite -1t1t as -tt.
3t-2(-t)=-33t2(t)=3
Step 5.1.2.2
Multiply -11 by -22.
3t+2t=-33t+2t=3
3t+2t=-33t+2t=3
Step 5.1.3
Add 3t3t and 2t2t.
5t=-35t=3
5t=-35t=3
Step 5.2
Divide each term in 5t=-35t=3 by 55 and simplify.
Tap for more steps...
Step 5.2.1
Divide each term in 5t=-35t=3 by 55.
5t5=-355t5=35
Step 5.2.2
Simplify the left side.
Tap for more steps...
Step 5.2.2.1
Cancel the common factor of 55.
Tap for more steps...
Step 5.2.2.1.1
Cancel the common factor.
5t5=-35
Step 5.2.2.1.2
Divide t by 1.
t=-35
t=-35
t=-35
Step 5.2.3
Simplify the right side.
Tap for more steps...
Step 5.2.3.1
Move the negative in front of the fraction.
t=-35
t=-35
t=-35
t=-35
Step 6
Solve the parametric equations for x, y, and z using the value of t.
Tap for more steps...
Step 6.1
Solve the equation for x.
Tap for more steps...
Step 6.1.1
Remove parentheses.
x=0+3(-1(35))
Step 6.1.2
Remove parentheses.
x=0+3(-35)
Step 6.1.3
Simplify 0+3(-35).
Tap for more steps...
Step 6.1.3.1
Simplify each term.
Tap for more steps...
Step 6.1.3.1.1
Multiply 3(-35).
Tap for more steps...
Step 6.1.3.1.1.1
Multiply -1 by 3.
x=0-3(35)
Step 6.1.3.1.1.2
Combine -3 and 35.
x=0+-335
Step 6.1.3.1.1.3
Multiply -3 by 3.
x=0+-95
x=0+-95
Step 6.1.3.1.2
Move the negative in front of the fraction.
x=0-95
x=0-95
Step 6.1.3.2
Subtract 95 from 0.
x=-95
x=-95
x=-95
Step 6.2
Solve the equation for y.
Tap for more steps...
Step 6.2.1
Remove parentheses.
y=0-1(-1(35))
Step 6.2.2
Remove parentheses.
y=0-1(-35)
Step 6.2.3
Simplify 0-1(-35).
Tap for more steps...
Step 6.2.3.1
Multiply -1(-35).
Tap for more steps...
Step 6.2.3.1.1
Multiply -1 by -1.
y=0+1(35)
Step 6.2.3.1.2
Multiply 35 by 1.
y=0+35
y=0+35
Step 6.2.3.2
Add 0 and 35.
y=35
y=35
y=35
Step 6.3
Solve the equation for z.
Tap for more steps...
Step 6.3.1
Remove parentheses.
z=0+0(-1(35))
Step 6.3.2
Remove parentheses.
z=0+0(-35)
Step 6.3.3
Simplify 0+0(-35).
Tap for more steps...
Step 6.3.3.1
Multiply 0(-35).
Tap for more steps...
Step 6.3.3.1.1
Multiply -1 by 0.
z=0+0(35)
Step 6.3.3.1.2
Multiply 0 by 35.
z=0+0
z=0+0
Step 6.3.3.2
Add 0 and 0.
z=0
z=0
z=0
Step 6.4
The solved parametric equations for x, y, and z.
x=-95
y=35
z=0
x=-95
y=35
z=0
Step 7
Using the values calculated for x, y, and z, the intersection point is found to be (-95,35,0).
(-95,35,0)
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay