Trigonometry Examples
cos(75)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 75 can be split into 30+45.
cos(30+45)
Step 2
Use the sum formula for cosine to simplify the expression. The formula states that cos(A+B)=−(cos(A)cos(B)+sin(A)sin(B)).
cos(45)⋅cos(30)−sin(45)⋅sin(30)
Step 3
Remove parentheses.
cos(45)⋅cos(30)−sin(45)⋅sin(30)
Step 4
Step 4.1
The exact value of cos(45) is √22.
√22⋅cos(30)−sin(45)⋅sin(30)
Step 4.2
The exact value of cos(30) is √32.
√22⋅√32−sin(45)⋅sin(30)
Step 4.3
Multiply √22⋅√32.
Step 4.3.1
Multiply √22 by √32.
√2√32⋅2−sin(45)⋅sin(30)
Step 4.3.2
Combine using the product rule for radicals.
√2⋅32⋅2−sin(45)⋅sin(30)
Step 4.3.3
Multiply 2 by 3.
√62⋅2−sin(45)⋅sin(30)
Step 4.3.4
Multiply 2 by 2.
√64−sin(45)⋅sin(30)
√64−sin(45)⋅sin(30)
Step 4.4
The exact value of sin(45) is √22.
√64−√22⋅sin(30)
Step 4.5
The exact value of sin(30) is 12.
√64−√22⋅12
Step 4.6
Multiply −√22⋅12.
Step 4.6.1
Multiply 12 by √22.
√64−√22⋅2
Step 4.6.2
Multiply 2 by 2.
√64−√24
√64−√24
√64−√24
Step 5
Combine the numerators over the common denominator.
√6−√24
Step 6
The result can be shown in multiple forms.
Exact Form:
√6−√24
Decimal Form:
0.25881904…