Trigonometry Examples

f(θ)=3sin(θ)f(θ)=3sin(θ)
Step 1
Use the form asin(bx-c)+dasin(bxc)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=3a=3
b=1b=1
c=0c=0
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 33
Step 3
Find the period of 3sin(x)3sin(x).
Tap for more steps...
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 11 in the formula for period.
2π|1|2π|1|
Step 3.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
2π12π1
Step 3.4
Divide 2π2π by 11.
2π2π
2π2π
Step 4
Find the phase shift using the formula cbcb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 4.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: 0101
Step 4.3
Divide 00 by 11.
Phase Shift: 00
Phase Shift: 00
Step 5
List the properties of the trigonometric function.
Amplitude: 33
Period: 2π2π
Phase Shift: None
Vertical Shift: None
Step 6
Select a few points to graph.
Tap for more steps...
Step 6.1
Find the point at x=0x=0.
Tap for more steps...
Step 6.1.1
Replace the variable xx with 00 in the expression.
f(0)=3sin(0)f(0)=3sin(0)
Step 6.1.2
Simplify the result.
Tap for more steps...
Step 6.1.2.1
The exact value of sin(0)sin(0) is 00.
f(0)=30f(0)=30
Step 6.1.2.2
Multiply 33 by 00.
f(0)=0f(0)=0
Step 6.1.2.3
The final answer is 00.
00
00
00
Step 6.2
Find the point at x=π2x=π2.
Tap for more steps...
Step 6.2.1
Replace the variable xx with π2π2 in the expression.
f(π2)=3sin(π2)f(π2)=3sin(π2)
Step 6.2.2
Simplify the result.
Tap for more steps...
Step 6.2.2.1
The exact value of sin(π2)sin(π2) is 11.
f(π2)=31f(π2)=31
Step 6.2.2.2
Multiply 33 by 11.
f(π2)=3f(π2)=3
Step 6.2.2.3
The final answer is 33.
33
33
33
Step 6.3
Find the point at x=πx=π.
Tap for more steps...
Step 6.3.1
Replace the variable xx with ππ in the expression.
f(π)=3sin(π)f(π)=3sin(π)
Step 6.3.2
Simplify the result.
Tap for more steps...
Step 6.3.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
f(π)=3sin(0)f(π)=3sin(0)
Step 6.3.2.2
The exact value of sin(0)sin(0) is 00.
f(π)=30f(π)=30
Step 6.3.2.3
Multiply 33 by 00.
f(π)=0f(π)=0
Step 6.3.2.4
The final answer is 00.
00
00
00
Step 6.4
Find the point at x=3π2x=3π2.
Tap for more steps...
Step 6.4.1
Replace the variable xx with 3π23π2 in the expression.
f(3π2)=3sin(3π2)f(3π2)=3sin(3π2)
Step 6.4.2
Simplify the result.
Tap for more steps...
Step 6.4.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
f(3π2)=3(-sin(π2))f(3π2)=3(sin(π2))
Step 6.4.2.2
The exact value of sin(π2)sin(π2) is 11.
f(3π2)=3(-11)f(3π2)=3(11)
Step 6.4.2.3
Multiply 3(-11)3(11).
Tap for more steps...
Step 6.4.2.3.1
Multiply -11 by 11.
f(3π2)=3-1f(3π2)=31
Step 6.4.2.3.2
Multiply 33 by -11.
f(3π2)=-3f(3π2)=3
f(3π2)=-3f(3π2)=3
Step 6.4.2.4
The final answer is -33.
-33
-33
-33
Step 6.5
Find the point at x=2πx=2π.
Tap for more steps...
Step 6.5.1
Replace the variable xx with 2π2π in the expression.
f(2π)=3sin(2π)f(2π)=3sin(2π)
Step 6.5.2
Simplify the result.
Tap for more steps...
Step 6.5.2.1
Subtract full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
f(2π)=3sin(0)f(2π)=3sin(0)
Step 6.5.2.2
The exact value of sin(0)sin(0) is 00.
f(2π)=30f(2π)=30
Step 6.5.2.3
Multiply 33 by 00.
f(2π)=0f(2π)=0
Step 6.5.2.4
The final answer is 00.
00
00
00
Step 6.6
List the points in a table.
xf(x)00π23π03π2-32π0xf(x)00π23π03π232π0
xf(x)00π23π03π2-32π0xf(x)00π23π03π232π0
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 33
Period: 2π2π
Phase Shift: None
Vertical Shift: None
xf(x)00π23π03π2-32π0xf(x)00π23π03π232π0
Step 8
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay