Trigonometry Examples
y=2cos(4x-π4)y=2cos(4x−π4)
Step 1
Use the form acos(bx-c)+dacos(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=2a=2
b=4b=4
c=π4c=π4
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 22
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 44 in the formula for period.
2π|4|2π|4|
Step 3.3
The absolute value is the distance between a number and zero. The distance between 00 and 44 is 44.
2π42π4
Step 3.4
Cancel the common factor of 22 and 44.
Step 3.4.1
Factor 22 out of 2π2π.
2(π)42(π)4
Step 3.4.2
Cancel the common factors.
Step 3.4.2.1
Factor 22 out of 44.
2π2⋅22π2⋅2
Step 3.4.2.2
Cancel the common factor.
2π2⋅2
Step 3.4.2.3
Rewrite the expression.
π2
π2
π2
π2
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: π44
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: π4⋅14
Step 4.4
Multiply π4⋅14.
Step 4.4.1
Multiply π4 by 14.
Phase Shift: π4⋅4
Step 4.4.2
Multiply 4 by 4.
Phase Shift: π16
Phase Shift: π16
Phase Shift: π16
Step 5
List the properties of the trigonometric function.
Amplitude: 2
Period: π2
Phase Shift: π16 (π16 to the right)
Vertical Shift: None
Step 6