Precalculus Examples
[3246][3246]
Step 1
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 2
Step 2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
3⋅6-4⋅2
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 3 by 6.
18-4⋅2
Step 2.2.1.2
Multiply -4 by 2.
18-8
18-8
Step 2.2.2
Subtract 8 from 18.
10
10
10
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
110[6-2-43]
Step 5
Multiply 110 by each element of the matrix.
[110⋅6110⋅-2110⋅-4110⋅3]
Step 6
Step 6.1
Cancel the common factor of 2.
Step 6.1.1
Factor 2 out of 10.
[12(5)⋅6110⋅-2110⋅-4110⋅3]
Step 6.1.2
Factor 2 out of 6.
[12⋅5⋅(2⋅3)110⋅-2110⋅-4110⋅3]
Step 6.1.3
Cancel the common factor.
[12⋅5⋅(2⋅3)110⋅-2110⋅-4110⋅3]
Step 6.1.4
Rewrite the expression.
[15⋅3110⋅-2110⋅-4110⋅3]
[15⋅3110⋅-2110⋅-4110⋅3]
Step 6.2
Combine 15 and 3.
[35110⋅-2110⋅-4110⋅3]
Step 6.3
Cancel the common factor of 2.
Step 6.3.1
Factor 2 out of 10.
[3512(5)⋅-2110⋅-4110⋅3]
Step 6.3.2
Factor 2 out of -2.
[3512⋅5⋅(2⋅-1)110⋅-4110⋅3]
Step 6.3.3
Cancel the common factor.
[3512⋅5⋅(2⋅-1)110⋅-4110⋅3]
Step 6.3.4
Rewrite the expression.
[3515⋅-1110⋅-4110⋅3]
[3515⋅-1110⋅-4110⋅3]
Step 6.4
Combine 15 and -1.
[35-15110⋅-4110⋅3]
Step 6.5
Move the negative in front of the fraction.
[35-15110⋅-4110⋅3]
Step 6.6
Cancel the common factor of 2.
Step 6.6.1
Factor 2 out of 10.
[35-1512(5)⋅-4110⋅3]
Step 6.6.2
Factor 2 out of -4.
[35-1512⋅5⋅(2⋅-2)110⋅3]
Step 6.6.3
Cancel the common factor.
[35-1512⋅5⋅(2⋅-2)110⋅3]
Step 6.6.4
Rewrite the expression.
[35-1515⋅-2110⋅3]
[35-1515⋅-2110⋅3]
Step 6.7
Combine 15 and -2.
[35-15-25110⋅3]
Step 6.8
Move the negative in front of the fraction.
[35-15-25110⋅3]
Step 6.9
Combine 110 and 3.
[35-15-25310]
[35-15-25310]