Linear Algebra Examples
S={[2-1312],[12-152],[21-361]}S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩⎡⎢
⎢
⎢
⎢
⎢
⎢⎣2−1312⎤⎥
⎥
⎥
⎥
⎥
⎥⎦,⎡⎢
⎢
⎢
⎢
⎢
⎢⎣12−152⎤⎥
⎥
⎥
⎥
⎥
⎥⎦,⎡⎢
⎢
⎢
⎢
⎢
⎢⎣21−361⎤⎥
⎥
⎥
⎥
⎥
⎥⎦⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
Step 1
Write as an augmented matrix for Ax=0Ax=0.
[2120-12103-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣2120−12103−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2
Step 2.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Step 2.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[22122202-12103-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣22122202−12103−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.1.2
Simplify R1R1.
[11210-12103-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210−12103−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[11210-12103-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210−12103−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.2
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
Step 2.2.1
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
[11210-1+1⋅12+121+1⋅10+03-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210−1+1⋅12+121+1⋅10+03−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.2.2
Simplify R2R2.
[11210052203-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052203−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[11210052203-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052203−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.3
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
Step 2.3.1
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
[11210052203-3⋅1-1-3(12)-3-3⋅10-3⋅015602210]
Step 2.3.2
Simplify R3.
[11210052200-52-6015602210]
[11210052200-52-6015602210]
Step 2.4
Perform the row operation R4=R4-R1 to make the entry at 4,1 a 0.
Step 2.4.1
Perform the row operation R4=R4-R1 to make the entry at 4,1 a 0.
[11210052200-52-601-15-126-10-02210]
Step 2.4.2
Simplify R4.
[11210052200-52-60092502210]
[11210052200-52-60092502210]
Step 2.5
Perform the row operation R5=R5-2R1 to make the entry at 5,1 a 0.
Step 2.5.1
Perform the row operation R5=R5-2R1 to make the entry at 5,1 a 0.
[11210052200-52-60092502-2⋅12-2(12)1-2⋅10-2⋅0]
Step 2.5.2
Simplify R5.
[11210052200-52-600925001-10]
[11210052200-52-600925001-10]
Step 2.6
Multiply each element of R2 by 25 to make the entry at 2,2 a 1.
Step 2.6.1
Multiply each element of R2 by 25 to make the entry at 2,2 a 1.
[1121025⋅025⋅5225⋅225⋅00-52-600925001-10]
Step 2.6.2
Simplify R2.
[11210014500-52-600925001-10]
[11210014500-52-600925001-10]
Step 2.7
Perform the row operation R3=R3+52R2 to make the entry at 3,2 a 0.
Step 2.7.1
Perform the row operation R3=R3+52R2 to make the entry at 3,2 a 0.
[11210014500+52⋅0-52+52⋅1-6+52⋅450+52⋅00925001-10]
Step 2.7.2
Simplify R3.
[112100145000-400925001-10]
[112100145000-400925001-10]
Step 2.8
Perform the row operation R4=R4-92R2 to make the entry at 4,2 a 0.
Step 2.8.1
Perform the row operation R4=R4-92R2 to make the entry at 4,2 a 0.
[112100145000-400-92⋅092-92⋅15-92⋅450-92⋅001-10]
Step 2.8.2
Simplify R4.
[112100145000-400075001-10]
[112100145000-400075001-10]
Step 2.9
Perform the row operation R5=R5-R2 to make the entry at 5,2 a 0.
Step 2.9.1
Perform the row operation R5=R5-R2 to make the entry at 5,2 a 0.
[112100145000-40007500-01-1-1-450-0]
Step 2.9.2
Simplify R5.
[112100145000-400075000-950]
[112100145000-400075000-950]
Step 2.10
Multiply each element of R3 by -14 to make the entry at 3,3 a 1.
Step 2.10.1
Multiply each element of R3 by -14 to make the entry at 3,3 a 1.
[1121001450-14⋅0-14⋅0-14⋅-4-14⋅00075000-950]
Step 2.10.2
Simplify R3.
[112100145000100075000-950]
[112100145000100075000-950]
Step 2.11
Perform the row operation R4=R4-75R3 to make the entry at 4,3 a 0.
Step 2.11.1
Perform the row operation R4=R4-75R3 to make the entry at 4,3 a 0.
[112100145000100-75⋅00-75⋅075-75⋅10-75⋅000-950]
Step 2.11.2
Simplify R4.
[11210014500010000000-950]
[11210014500010000000-950]
Step 2.12
Perform the row operation R5=R5+95R3 to make the entry at 5,3 a 0.
Step 2.12.1
Perform the row operation R5=R5+95R3 to make the entry at 5,3 a 0.
[1121001450001000000+95⋅00+95⋅0-95+95⋅10+95⋅0]
Step 2.12.2
Simplify R5.
[1121001450001000000000]
[1121001450001000000000]
Step 2.13
Perform the row operation R2=R2-45R3 to make the entry at 2,3 a 0.
Step 2.13.1
Perform the row operation R2=R2-45R3 to make the entry at 2,3 a 0.
[112100-45⋅01-45⋅045-45⋅10-45⋅0001000000000]
Step 2.13.2
Simplify R2.
[112100100001000000000]
[112100100001000000000]
Step 2.14
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
Step 2.14.1
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
[1-012-01-10-00100001000000000]
Step 2.14.2
Simplify R1.
[112000100001000000000]
[112000100001000000000]
Step 2.15
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
Step 2.15.1
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
[1-12⋅012-12⋅10-12⋅00-12⋅00100001000000000]
Step 2.15.2
Simplify R1.
[10000100001000000000]
[10000100001000000000]
[10000100001000000000]
Step 3
Use the result matrix to declare the final solution to the system of equations.
x=0
y=0
z=0
0=0
0=0
Step 4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[000]
Step 5
Write as a solution set.
{[000]}