Finite Math Examples
5x-y=-25x−y=−2 , 3x-4y=03x−4y=0
Step 1
Represent the system of equations in matrix format.
[5-13-4][xy]=[-20][5−13−4][xy]=[−20]
Step 2
Step 2.1
Write [5-13-4][5−13−4] in determinant notation.
|5-13-4|∣∣∣5−13−4∣∣∣
Step 2.2
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
5⋅-4-3⋅-15⋅−4−3⋅−1
Step 2.3
Simplify the determinant.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Multiply 55 by -4−4.
-20-3⋅-1−20−3⋅−1
Step 2.3.1.2
Multiply -3−3 by -1−1.
-20+3−20+3
-20+3−20+3
Step 2.3.2
Add -20−20 and 33.
-17−17
-17−17
D=-17D=−17
Step 3
Since the determinant is not 00, the system can be solved using Cramer's Rule.
Step 4
Step 4.1
Replace column 11 of the coefficient matrix that corresponds to the xx-coefficients of the system with [-20][−20].
|-2-10-4|∣∣∣−2−10−4∣∣∣
Step 4.2
Find the determinant.
Step 4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-2⋅-4+0⋅-1−2⋅−4+0⋅−1
Step 4.2.2
Simplify the determinant.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Multiply -2−2 by -4−4.
8+0⋅-18+0⋅−1
Step 4.2.2.1.2
Multiply 00 by -1−1.
8+08+0
8+08+0
Step 4.2.2.2
Add 88 and 00.
88
88
Dx=8Dx=8
Step 4.3
Use the formula to solve for xx.
x=DxDx=DxD
Step 4.4
Substitute -17−17 for DD and 88 for DxDx in the formula.
x=8-17x=8−17
Step 4.5
Move the negative in front of the fraction.
x=-817x=−817
x=-817x=−817
Step 5
Step 5.1
Replace column 22 of the coefficient matrix that corresponds to the yy-coefficients of the system with [-20][−20].
|5-230|∣∣∣5−230∣∣∣
Step 5.2
Find the determinant.
Step 5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
5⋅0-3⋅-25⋅0−3⋅−2
Step 5.2.2
Simplify the determinant.
Step 5.2.2.1
Simplify each term.
Step 5.2.2.1.1
Multiply 55 by 00.
0-3⋅-20−3⋅−2
Step 5.2.2.1.2
Multiply -3−3 by -2−2.
0+60+6
0+60+6
Step 5.2.2.2
Add 00 and 66.
66
66
Dy=6Dy=6
Step 5.3
Use the formula to solve for yy.
y=DyDy=DyD
Step 5.4
Substitute -17−17 for DD and 66 for DyDy in the formula.
y=6-17y=6−17
Step 5.5
Move the negative in front of the fraction.
y=-617y=−617
y=-617y=−617
Step 6
List the solution to the system of equations.
x=-817x=−817
y=-617y=−617