Finite Math Examples
f(x)=x2-5x+6f(x)=x2−5x+6
Step 1
The minimum of a quadratic function occurs at x=-b2ax=−b2a. If aa is positive, the minimum value of the function is f(-b2a)f(−b2a).
fminfminx=ax2+bx+cx=ax2+bx+c occurs at x=-b2ax=−b2a
Step 2
Step 2.1
Substitute in the values of aa and bb.
x=--52(1)x=−−52(1)
Step 2.2
Remove parentheses.
x=--52(1)x=−−52(1)
Step 2.3
Simplify --52(1)−−52(1).
Step 2.3.1
Multiply 22 by 11.
x=--52x=−−52
Step 2.3.2
Move the negative in front of the fraction.
x=--52x=−−52
Step 2.3.3
Multiply --52−−52.
Step 2.3.3.1
Multiply -1−1 by -1−1.
x=1(52)x=1(52)
Step 2.3.3.2
Multiply 5252 by 11.
x=52x=52
x=52x=52
x=52x=52
x=52x=52
Step 3
Step 3.1
Replace the variable x with 52 in the expression.
f(52)=(52)2-5(52)+6
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Apply the product rule to 52.
f(52)=5222-5(52)+6
Step 3.2.1.2
Raise 5 to the power of 2.
f(52)=2522-5(52)+6
Step 3.2.1.3
Raise 2 to the power of 2.
f(52)=254-5(52)+6
Step 3.2.1.4
Multiply -5(52).
Step 3.2.1.4.1
Combine -5 and 52.
f(52)=254+-5⋅52+6
Step 3.2.1.4.2
Multiply -5 by 5.
f(52)=254+-252+6
f(52)=254+-252+6
Step 3.2.1.5
Move the negative in front of the fraction.
f(52)=254-252+6
f(52)=254-252+6
Step 3.2.2
Find the common denominator.
Step 3.2.2.1
Multiply 252 by 22.
f(52)=254-(252⋅22)+6
Step 3.2.2.2
Multiply 252 by 22.
f(52)=254-25⋅22⋅2+6
Step 3.2.2.3
Write 6 as a fraction with denominator 1.
f(52)=254-25⋅22⋅2+61
Step 3.2.2.4
Multiply 61 by 44.
f(52)=254-25⋅22⋅2+61⋅44
Step 3.2.2.5
Multiply 61 by 44.
f(52)=254-25⋅22⋅2+6⋅44
Step 3.2.2.6
Multiply 2 by 2.
f(52)=254-25⋅24+6⋅44
f(52)=254-25⋅24+6⋅44
Step 3.2.3
Combine the numerators over the common denominator.
f(52)=25-25⋅2+6⋅44
Step 3.2.4
Simplify each term.
Step 3.2.4.1
Multiply -25 by 2.
f(52)=25-50+6⋅44
Step 3.2.4.2
Multiply 6 by 4.
f(52)=25-50+244
f(52)=25-50+244
Step 3.2.5
Simplify the expression.
Step 3.2.5.1
Subtract 50 from 25.
f(52)=-25+244
Step 3.2.5.2
Add -25 and 24.
f(52)=-14
Step 3.2.5.3
Move the negative in front of the fraction.
f(52)=-14
f(52)=-14
Step 3.2.6
The final answer is -14.
-14
-14
-14
Step 4
Use the x and y values to find where the minimum occurs.
(52,-14)
Step 5