Calculus Examples
f(x)=x4+2x3-8x+1f(x)=x4+2x3−8x+1
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate.
Step 1.1.1.1
By the Sum Rule, the derivative of x4+2x3-8x+1x4+2x3−8x+1 with respect to xx is ddx[x4]+ddx[2x3]+ddx[-8x]+ddx[1]ddx[x4]+ddx[2x3]+ddx[−8x]+ddx[1].
ddx[x4]+ddx[2x3]+ddx[-8x]+ddx[1]ddx[x4]+ddx[2x3]+ddx[−8x]+ddx[1]
Step 1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=4n=4.
4x3+ddx[2x3]+ddx[-8x]+ddx[1]4x3+ddx[2x3]+ddx[−8x]+ddx[1]
4x3+ddx[2x3]+ddx[-8x]+ddx[1]4x3+ddx[2x3]+ddx[−8x]+ddx[1]
Step 1.1.2
Evaluate ddx[2x3]ddx[2x3].
Step 1.1.2.1
Since 22 is constant with respect to xx, the derivative of 2x32x3 with respect to xx is 2ddx[x3]2ddx[x3].
4x3+2ddx[x3]+ddx[-8x]+ddx[1]4x3+2ddx[x3]+ddx[−8x]+ddx[1]
Step 1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=3n=3.
4x3+2(3x2)+ddx[-8x]+ddx[1]4x3+2(3x2)+ddx[−8x]+ddx[1]
Step 1.1.2.3
Multiply 33 by 22.
4x3+6x2+ddx[-8x]+ddx[1]4x3+6x2+ddx[−8x]+ddx[1]
4x3+6x2+ddx[-8x]+ddx[1]4x3+6x2+ddx[−8x]+ddx[1]
Step 1.1.3
Evaluate ddx[-8x]ddx[−8x].
Step 1.1.3.1
Since -8−8 is constant with respect to xx, the derivative of -8x−8x with respect to xx is -8ddx[x]−8ddx[x].
4x3+6x2-8ddx[x]+ddx[1]4x3+6x2−8ddx[x]+ddx[1]
Step 1.1.3.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
4x3+6x2-8⋅1+ddx[1]4x3+6x2−8⋅1+ddx[1]
Step 1.1.3.3
Multiply -8−8 by 11.
4x3+6x2-8+ddx[1]4x3+6x2−8+ddx[1]
4x3+6x2-8+ddx[1]4x3+6x2−8+ddx[1]
Step 1.1.4
Differentiate using the Constant Rule.
Step 1.1.4.1
Since 11 is constant with respect to xx, the derivative of 11 with respect to xx is 00.
4x3+6x2-8+04x3+6x2−8+0
Step 1.1.4.2
Add 4x3+6x2-84x3+6x2−8 and 00.
f′(x)=4x3+6x2-8
f′(x)=4x3+6x2-8
f′(x)=4x3+6x2-8
Step 1.2
Find the second derivative.
Step 1.2.1
By the Sum Rule, the derivative of 4x3+6x2-8 with respect to x is ddx[4x3]+ddx[6x2]+ddx[-8].
ddx[4x3]+ddx[6x2]+ddx[-8]
Step 1.2.2
Evaluate ddx[4x3].
Step 1.2.2.1
Since 4 is constant with respect to x, the derivative of 4x3 with respect to x is 4ddx[x3].
4ddx[x3]+ddx[6x2]+ddx[-8]
Step 1.2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
4(3x2)+ddx[6x2]+ddx[-8]
Step 1.2.2.3
Multiply 3 by 4.
12x2+ddx[6x2]+ddx[-8]
12x2+ddx[6x2]+ddx[-8]
Step 1.2.3
Evaluate ddx[6x2].
Step 1.2.3.1
Since 6 is constant with respect to x, the derivative of 6x2 with respect to x is 6ddx[x2].
12x2+6ddx[x2]+ddx[-8]
Step 1.2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
12x2+6(2x)+ddx[-8]
Step 1.2.3.3
Multiply 2 by 6.
12x2+12x+ddx[-8]
12x2+12x+ddx[-8]
Step 1.2.4
Differentiate using the Constant Rule.
Step 1.2.4.1
Since -8 is constant with respect to x, the derivative of -8 with respect to x is 0.
12x2+12x+0
Step 1.2.4.2
Add 12x2+12x and 0.
f′′(x)=12x2+12x
f′′(x)=12x2+12x
f′′(x)=12x2+12x
Step 1.3
The second derivative of f(x) with respect to x is 12x2+12x.
12x2+12x
12x2+12x
Step 2
Step 2.1
Set the second derivative equal to 0.
12x2+12x=0
Step 2.2
Factor 12x out of 12x2+12x.
Step 2.2.1
Factor 12x out of 12x2.
12x(x)+12x=0
Step 2.2.2
Factor 12x out of 12x.
12x(x)+12x(1)=0
Step 2.2.3
Factor 12x out of 12x(x)+12x(1).
12x(x+1)=0
12x(x+1)=0
Step 2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x+1=0
Step 2.4
Set x equal to 0.
x=0
Step 2.5
Set x+1 equal to 0 and solve for x.
Step 2.5.1
Set x+1 equal to 0.
x+1=0
Step 2.5.2
Subtract 1 from both sides of the equation.
x=-1
x=-1
Step 2.6
The final solution is all the values that make 12x(x+1)=0 true.
x=0,-1
x=0,-1
Step 3
Step 3.1
Substitute 0 in f(x)=x4+2x3-8x+1 to find the value of y.
Step 3.1.1
Replace the variable x with 0 in the expression.
f(0)=(0)4+2(0)3-8⋅0+1
Step 3.1.2
Simplify the result.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
Raising 0 to any positive power yields 0.
f(0)=0+2(0)3-8⋅0+1
Step 3.1.2.1.2
Raising 0 to any positive power yields 0.
f(0)=0+2⋅0-8⋅0+1
Step 3.1.2.1.3
Multiply 2 by 0.
f(0)=0+0-8⋅0+1
Step 3.1.2.1.4
Multiply -8 by 0.
f(0)=0+0+0+1
f(0)=0+0+0+1
Step 3.1.2.2
Simplify by adding numbers.
Step 3.1.2.2.1
Add 0 and 0.
f(0)=0+0+1
Step 3.1.2.2.2
Add 0 and 0.
f(0)=0+1
Step 3.1.2.2.3
Add 0 and 1.
f(0)=1
f(0)=1
Step 3.1.2.3
The final answer is 1.
1
1
1
Step 3.2
The point found by substituting 0 in f(x)=x4+2x3-8x+1 is (0,1). This point can be an inflection point.
(0,1)
Step 3.3
Substitute -1 in f(x)=x4+2x3-8x+1 to find the value of y.
Step 3.3.1
Replace the variable x with -1 in the expression.
f(-1)=(-1)4+2(-1)3-8⋅-1+1
Step 3.3.2
Simplify the result.
Step 3.3.2.1
Simplify each term.
Step 3.3.2.1.1
Raise -1 to the power of 4.
f(-1)=1+2(-1)3-8⋅-1+1
Step 3.3.2.1.2
Raise -1 to the power of 3.
f(-1)=1+2⋅-1-8⋅-1+1
Step 3.3.2.1.3
Multiply 2 by -1.
f(-1)=1-2-8⋅-1+1
Step 3.3.2.1.4
Multiply -8 by -1.
f(-1)=1-2+8+1
f(-1)=1-2+8+1
Step 3.3.2.2
Simplify by adding and subtracting.
Step 3.3.2.2.1
Subtract 2 from 1.
f(-1)=-1+8+1
Step 3.3.2.2.2
Add -1 and 8.
f(-1)=7+1
Step 3.3.2.2.3
Add 7 and 1.
f(-1)=8
f(-1)=8
Step 3.3.2.3
The final answer is 8.
8
8
8
Step 3.4
The point found by substituting -1 in f(x)=x4+2x3-8x+1 is (-1,8). This point can be an inflection point.
(-1,8)
Step 3.5
Determine the points that could be inflection points.
(0,1),(-1,8)
(0,1),(-1,8)
Step 4
Split (-∞,∞) into intervals around the points that could potentially be inflection points.
(-∞,-1)∪(-1,0)∪(0,∞)
Step 5
Step 5.1
Replace the variable x with -1.1 in the expression.
f′′(-1.1)=12(-1.1)2+12(-1.1)
Step 5.2
Simplify the result.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Raise -1.1 to the power of 2.
f′′(-1.1)=12⋅1.21+12(-1.1)
Step 5.2.1.2
Multiply 12 by 1.21.
f′′(-1.1)=14.52+12(-1.1)
Step 5.2.1.3
Multiply 12 by -1.1.
f′′(-1.1)=14.52-13.2
f′′(-1.1)=14.52-13.2
Step 5.2.2
Subtract 13.2 from 14.52.
f′′(-1.1)=1.32
Step 5.2.3
The final answer is 1.32.
1.32
1.32
Step 5.3
At -1.1, the second derivative is 1.32. Since this is positive, the second derivative is increasing on the interval (-∞,-1).
Increasing on (-∞,-1) since f′′(x)>0
Increasing on (-∞,-1) since f′′(x)>0
Step 6
Step 6.1
Replace the variable x with -12 in the expression.
f′′(-12)=12(-12)2+12(-12)
Step 6.2
Simplify the result.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 6.2.1.1.1
Apply the product rule to -12.
f′′(-12)=12((-1)2(12)2)+12(-12)
Step 6.2.1.1.2
Apply the product rule to 12.
f′′(-12)=12((-1)2(1222))+12(-12)
f′′(-12)=12((-1)2(1222))+12(-12)
Step 6.2.1.2
Raise -1 to the power of 2.
f′′(-12)=12(1(1222))+12(-12)
Step 6.2.1.3
Multiply 1222 by 1.
f′′(-12)=12(1222)+12(-12)
Step 6.2.1.4
One to any power is one.
f′′(-12)=12(122)+12(-12)
Step 6.2.1.5
Raise 2 to the power of 2.
f′′(-12)=12(14)+12(-12)
Step 6.2.1.6
Cancel the common factor of 4.
Step 6.2.1.6.1
Factor 4 out of 12.
f′′(-12)=4(3)(14)+12(-12)
Step 6.2.1.6.2
Cancel the common factor.
f′′(-12)=4⋅(3(14))+12(-12)
Step 6.2.1.6.3
Rewrite the expression.
f′′(-12)=3+12(-12)
f′′(-12)=3+12(-12)
Step 6.2.1.7
Cancel the common factor of 2.
Step 6.2.1.7.1
Move the leading negative in -12 into the numerator.
f′′(-12)=3+12(-12)
Step 6.2.1.7.2
Factor 2 out of 12.
f′′(-12)=3+2(6)(-12)
Step 6.2.1.7.3
Cancel the common factor.
f′′(-12)=3+2⋅(6(-12))
Step 6.2.1.7.4
Rewrite the expression.
f′′(-12)=3+6⋅-1
f′′(-12)=3+6⋅-1
Step 6.2.1.8
Multiply 6 by -1.
f′′(-12)=3-6
f′′(-12)=3-6
Step 6.2.2
Subtract 6 from 3.
f′′(-12)=-3
Step 6.2.3
The final answer is -3.
-3
-3
Step 6.3
At -12, the second derivative is -3. Since this is negative, the second derivative is decreasing on the interval (-1,0)
Decreasing on (-1,0) since f′′(x)<0
Decreasing on (-1,0) since f′′(x)<0
Step 7
Step 7.1
Replace the variable x with 0.1 in the expression.
f′′(0.1)=12(0.1)2+12(0.1)
Step 7.2
Simplify the result.
Step 7.2.1
Simplify each term.
Step 7.2.1.1
Raise 0.1 to the power of 2.
f′′(0.1)=12⋅0.01+12(0.1)
Step 7.2.1.2
Multiply 12 by 0.01.
f′′(0.1)=0.12+12(0.1)
Step 7.2.1.3
Multiply 12 by 0.1.
f′′(0.1)=0.12+1.2
f′′(0.1)=0.12+1.2
Step 7.2.2
Add 0.12 and 1.2.
f′′(0.1)=1.32
Step 7.2.3
The final answer is 1.32.
1.32
1.32
Step 7.3
At 0.1, the second derivative is 1.32. Since this is positive, the second derivative is increasing on the interval (0,∞).
Increasing on (0,∞) since f′′(x)>0
Increasing on (0,∞) since f′′(x)>0
Step 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are (-1,8),(0,1).
(-1,8),(0,1)
Step 9