Algebra Examples
3x+y=43x+y=4 , 6x-7y=26x−7y=2
Step 1
Multiply each equation by the value that makes the coefficients of xx opposite.
(-2)⋅(3x+y)=(-2)(4)(−2)⋅(3x+y)=(−2)(4)
6x-7y=26x−7y=2
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Simplify (-2)⋅(3x+y)(−2)⋅(3x+y).
Step 2.1.1.1
Apply the distributive property.
-2(3x)-2y=(-2)(4)−2(3x)−2y=(−2)(4)
6x-7y=26x−7y=2
Step 2.1.1.2
Multiply 33 by -2−2.
-6x-2y=(-2)(4)−6x−2y=(−2)(4)
6x-7y=26x−7y=2
-6x-2y=(-2)(4)−6x−2y=(−2)(4)
6x-7y=26x−7y=2
-6x-2y=(-2)(4)−6x−2y=(−2)(4)
6x-7y=26x−7y=2
Step 2.2
Simplify the right side.
Step 2.2.1
Multiply -2−2 by 44.
-6x-2y=-8−6x−2y=−8
6x-7y=26x−7y=2
-6x-2y=-8−6x−2y=−8
6x-7y=26x−7y=2
-6x-2y=-8−6x−2y=−8
6x-7y=26x−7y=2
Step 3
Add the two equations together to eliminate xx from the system.
-− | 66 | xx | -− | 22 | yy | == | -− | 88 | |||
++ | 66 | xx | -− | 77 | yy | == | 22 | ||||
-− | 99 | yy | == | -− | 66 |
Step 4
Step 4.1
Divide each term in -9y=-6−9y=−6 by -9−9.
-9y-9=-6-9−9y−9=−6−9
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of -9−9.
Step 4.2.1.1
Cancel the common factor.
-9y-9=-6-9
Step 4.2.1.2
Divide y by 1.
y=-6-9
y=-6-9
y=-6-9
Step 4.3
Simplify the right side.
Step 4.3.1
Cancel the common factor of -6 and -9.
Step 4.3.1.1
Factor -3 out of -6.
y=-3(2)-9
Step 4.3.1.2
Cancel the common factors.
Step 4.3.1.2.1
Factor -3 out of -9.
y=-3⋅2-3⋅3
Step 4.3.1.2.2
Cancel the common factor.
y=-3⋅2-3⋅3
Step 4.3.1.2.3
Rewrite the expression.
y=23
y=23
y=23
y=23
y=23
Step 5
Step 5.1
Substitute the value found for y into one of the original equations to solve for x.
-6x-2(23)=-8
Step 5.2
Simplify each term.
Step 5.2.1
Multiply -2(23).
Step 5.2.1.1
Combine -2 and 23.
-6x+-2⋅23=-8
Step 5.2.1.2
Multiply -2 by 2.
-6x+-43=-8
-6x+-43=-8
Step 5.2.2
Move the negative in front of the fraction.
-6x-43=-8
-6x-43=-8
Step 5.3
Move all terms not containing x to the right side of the equation.
Step 5.3.1
Add 43 to both sides of the equation.
-6x=-8+43
Step 5.3.2
To write -8 as a fraction with a common denominator, multiply by 33.
-6x=-8⋅33+43
Step 5.3.3
Combine -8 and 33.
-6x=-8⋅33+43
Step 5.3.4
Combine the numerators over the common denominator.
-6x=-8⋅3+43
Step 5.3.5
Simplify the numerator.
Step 5.3.5.1
Multiply -8 by 3.
-6x=-24+43
Step 5.3.5.2
Add -24 and 4.
-6x=-203
-6x=-203
Step 5.3.6
Move the negative in front of the fraction.
-6x=-203
-6x=-203
Step 5.4
Divide each term in -6x=-203 by -6 and simplify.
Step 5.4.1
Divide each term in -6x=-203 by -6.
-6x-6=-203-6
Step 5.4.2
Simplify the left side.
Step 5.4.2.1
Cancel the common factor of -6.
Step 5.4.2.1.1
Cancel the common factor.
-6x-6=-203-6
Step 5.4.2.1.2
Divide x by 1.
x=-203-6
x=-203-6
x=-203-6
Step 5.4.3
Simplify the right side.
Step 5.4.3.1
Multiply the numerator by the reciprocal of the denominator.
x=-203⋅1-6
Step 5.4.3.2
Cancel the common factor of 2.
Step 5.4.3.2.1
Move the leading negative in -203 into the numerator.
x=-203⋅1-6
Step 5.4.3.2.2
Factor 2 out of -20.
x=2(-10)3⋅1-6
Step 5.4.3.2.3
Factor 2 out of -6.
x=2⋅-103⋅12⋅-3
Step 5.4.3.2.4
Cancel the common factor.
x=2⋅-103⋅12⋅-3
Step 5.4.3.2.5
Rewrite the expression.
x=-103⋅1-3
x=-103⋅1-3
Step 5.4.3.3
Multiply -103 by 1-3.
x=-103⋅-3
Step 5.4.3.4
Multiply 3 by -3.
x=-10-9
Step 5.4.3.5
Dividing two negative values results in a positive value.
x=109
x=109
x=109
x=109
Step 6
The solution to the independent system of equations can be represented as a point.
(109,23)
Step 7
The result can be shown in multiple forms.
Point Form:
(109,23)
Equation Form:
x=109,y=23
Step 8