Algebra Examples

i+15i-1i+15i1
Step 1
Multiply the numerator and denominator of i+1-1+5ii+11+5i by the conjugate of -1+5i1+5i to make the denominator real.
i+1-1+5i-1-5i-1-5ii+11+5i15i15i
Step 2
Multiply.
Tap for more steps...
Step 2.1
Combine.
(i+1)(-1-5i)(-1+5i)(-1-5i)(i+1)(15i)(1+5i)(15i)
Step 2.2
Simplify the numerator.
Tap for more steps...
Step 2.2.1
Expand (i+1)(-1-5i)(i+1)(15i) using the FOIL Method.
Tap for more steps...
Step 2.2.1.1
Apply the distributive property.
i(-1-5i)+1(-1-5i)(-1+5i)(-1-5i)i(15i)+1(15i)(1+5i)(15i)
Step 2.2.1.2
Apply the distributive property.
i-1+i(-5i)+1(-1-5i)(-1+5i)(-1-5i)i1+i(5i)+1(15i)(1+5i)(15i)
Step 2.2.1.3
Apply the distributive property.
i-1+i(-5i)+1-1+1(-5i)(-1+5i)(-1-5i)i1+i(5i)+11+1(5i)(1+5i)(15i)
i-1+i(-5i)+1-1+1(-5i)(-1+5i)(-1-5i)i1+i(5i)+11+1(5i)(1+5i)(15i)
Step 2.2.2
Simplify and combine like terms.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Move -11 to the left of ii.
-1i+i(-5i)+1-1+1(-5i)(-1+5i)(-1-5i)1i+i(5i)+11+1(5i)(1+5i)(15i)
Step 2.2.2.1.2
Rewrite -1i1i as -ii.
-i+i(-5i)+1-1+1(-5i)(-1+5i)(-1-5i)i+i(5i)+11+1(5i)(1+5i)(15i)
Step 2.2.2.1.3
Multiply i(-5i)i(5i).
Tap for more steps...
Step 2.2.2.1.3.1
Raise ii to the power of 11.
-i-5(i1i)+1-1+1(-5i)(-1+5i)(-1-5i)i5(i1i)+11+1(5i)(1+5i)(15i)
Step 2.2.2.1.3.2
Raise ii to the power of 11.
-i-5(i1i1)+1-1+1(-5i)(-1+5i)(-1-5i)i5(i1i1)+11+1(5i)(1+5i)(15i)
Step 2.2.2.1.3.3
Use the power rule aman=am+naman=am+n to combine exponents.
-i-5i1+1+1-1+1(-5i)(-1+5i)(-1-5i)i5i1+1+11+1(5i)(1+5i)(15i)
Step 2.2.2.1.3.4
Add 11 and 11.
-i-5i2+1-1+1(-5i)(-1+5i)(-1-5i)i5i2+11+1(5i)(1+5i)(15i)
-i-5i2+1-1+1(-5i)(-1+5i)(-1-5i)i5i2+11+1(5i)(1+5i)(15i)
Step 2.2.2.1.4
Rewrite i2i2 as -11.
-i-5-1+1-1+1(-5i)(-1+5i)(-1-5i)i51+11+1(5i)(1+5i)(15i)
Step 2.2.2.1.5
Multiply -55 by -11.
-i+5+1-1+1(-5i)(-1+5i)(-1-5i)i+5+11+1(5i)(1+5i)(15i)
Step 2.2.2.1.6
Multiply -11 by 11.
-i+5-1+1(-5i)(-1+5i)(-1-5i)i+51+1(5i)(1+5i)(15i)
Step 2.2.2.1.7
Multiply -5i5i by 11.
-i+5-1-5i(-1+5i)(-1-5i)i+515i(1+5i)(15i)
-i+5-1-5i(-1+5i)(-1-5i)i+515i(1+5i)(15i)
Step 2.2.2.2
Subtract 5i5i from -ii.
5-1-6i(-1+5i)(-1-5i)516i(1+5i)(15i)
Step 2.2.2.3
Subtract 11 from 55.
4-6i(-1+5i)(-1-5i)46i(1+5i)(15i)
4-6i(-1+5i)(-1-5i)46i(1+5i)(15i)
4-6i(-1+5i)(-1-5i)46i(1+5i)(15i)
Step 2.3
Simplify the denominator.
Tap for more steps...
Step 2.3.1
Expand (-1+5i)(-1-5i)(1+5i)(15i) using the FOIL Method.
Tap for more steps...
Step 2.3.1.1
Apply the distributive property.
4-6i-1(-1-5i)+5i(-1-5i)46i1(15i)+5i(15i)
Step 2.3.1.2
Apply the distributive property.
4-6i-1-1-1(-5i)+5i(-1-5i)46i111(5i)+5i(15i)
Step 2.3.1.3
Apply the distributive property.
4-6i-1-1-1(-5i)+5i-1+5i(-5i)46i111(5i)+5i1+5i(5i)
4-6i-1-1-1(-5i)+5i-1+5i(-5i)46i111(5i)+5i1+5i(5i)
Step 2.3.2
Simplify.
Tap for more steps...
Step 2.3.2.1
Multiply -11 by -11.
4-6i1-1(-5i)+5i-1+5i(-5i)46i11(5i)+5i1+5i(5i)
Step 2.3.2.2
Multiply -55 by -11.
4-6i1+5i+5i-1+5i(-5i)46i1+5i+5i1+5i(5i)
Step 2.3.2.3
Multiply -11 by 55.
4-6i1+5i-5i+5i(-5i)46i1+5i5i+5i(5i)
Step 2.3.2.4
Multiply -55 by 55.
4-6i1+5i-5i-25ii46i1+5i5i25ii
Step 2.3.2.5
Raise ii to the power of 11.
4-6i1+5i-5i-25(i1i)46i1+5i5i25(i1i)
Step 2.3.2.6
Raise ii to the power of 11.
4-6i1+5i-5i-25(i1i1)46i1+5i5i25(i1i1)
Step 2.3.2.7
Use the power rule aman=am+naman=am+n to combine exponents.
4-6i1+5i-5i-25i1+146i1+5i5i25i1+1
Step 2.3.2.8
Add 11 and 11.
4-6i1+5i-5i-25i246i1+5i5i25i2
Step 2.3.2.9
Subtract 5i5i from 5i5i.
4-6i1+0-25i246i1+025i2
Step 2.3.2.10
Add 11 and 00.
4-6i1-25i246i125i2
4-6i1-25i246i125i2
Step 2.3.3
Simplify each term.
Tap for more steps...
Step 2.3.3.1
Rewrite i2i2 as -11.
4-6i1-25-146i1251
Step 2.3.3.2
Multiply -2525 by -11.
4-6i1+2546i1+25
4-6i1+2546i1+25
Step 2.3.4
Add 11 and 2525.
4-6i2646i26
4-6i2646i26
4-6i2646i26
Step 3
Cancel the common factor of 4-6i46i and 2626.
Tap for more steps...
Step 3.1
Factor 22 out of 44.
2(2)-6i262(2)6i26
Step 3.2
Factor 22 out of -6i6i.
2(2)+2(-3i)262(2)+2(3i)26
Step 3.3
Factor 22 out of 2(2)+2(-3i)2(2)+2(3i).
2(2-3i)262(23i)26
Step 3.4
Cancel the common factors.
Tap for more steps...
Step 3.4.1
Factor 22 out of 2626.
2(2-3i)2132(23i)213
Step 3.4.2
Cancel the common factor.
2(2-3i)213
Step 3.4.3
Rewrite the expression.
2-3i13
2-3i13
2-3i13
Step 4
Split the fraction 2-3i13 into two fractions.
213+-3i13
Step 5
Move the negative in front of the fraction.
213-3i13
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay