Algebra Examples
i+15i-1i+15i−1
Step 1
Multiply the numerator and denominator of i+1-1+5ii+1−1+5i by the conjugate of -1+5i−1+5i to make the denominator real.
i+1-1+5i⋅-1-5i-1-5ii+1−1+5i⋅−1−5i−1−5i
Step 2
Step 2.1
Combine.
(i+1)(-1-5i)(-1+5i)(-1-5i)(i+1)(−1−5i)(−1+5i)(−1−5i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (i+1)(-1-5i)(i+1)(−1−5i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
i(-1-5i)+1(-1-5i)(-1+5i)(-1-5i)i(−1−5i)+1(−1−5i)(−1+5i)(−1−5i)
Step 2.2.1.2
Apply the distributive property.
i⋅-1+i(-5i)+1(-1-5i)(-1+5i)(-1-5i)i⋅−1+i(−5i)+1(−1−5i)(−1+5i)(−1−5i)
Step 2.2.1.3
Apply the distributive property.
i⋅-1+i(-5i)+1⋅-1+1(-5i)(-1+5i)(-1-5i)i⋅−1+i(−5i)+1⋅−1+1(−5i)(−1+5i)(−1−5i)
i⋅-1+i(-5i)+1⋅-1+1(-5i)(-1+5i)(-1-5i)i⋅−1+i(−5i)+1⋅−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Move -1−1 to the left of ii.
-1⋅i+i(-5i)+1⋅-1+1(-5i)(-1+5i)(-1-5i)−1⋅i+i(−5i)+1⋅−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2.1.2
Rewrite -1i−1i as -i−i.
-i+i(-5i)+1⋅-1+1(-5i)(-1+5i)(-1-5i)−i+i(−5i)+1⋅−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2.1.3
Multiply i(-5i)i(−5i).
Step 2.2.2.1.3.1
Raise ii to the power of 11.
-i-5(i1i)+1⋅-1+1(-5i)(-1+5i)(-1-5i)−i−5(i1i)+1⋅−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2.1.3.2
Raise ii to the power of 11.
-i-5(i1i1)+1⋅-1+1(-5i)(-1+5i)(-1-5i)−i−5(i1i1)+1⋅−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2.1.3.3
Use the power rule aman=am+naman=am+n to combine exponents.
-i-5i1+1+1⋅-1+1(-5i)(-1+5i)(-1-5i)−i−5i1+1+1⋅−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2.1.3.4
Add 11 and 11.
-i-5i2+1⋅-1+1(-5i)(-1+5i)(-1-5i)−i−5i2+1⋅−1+1(−5i)(−1+5i)(−1−5i)
-i-5i2+1⋅-1+1(-5i)(-1+5i)(-1-5i)−i−5i2+1⋅−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2.1.4
Rewrite i2i2 as -1−1.
-i-5⋅-1+1⋅-1+1(-5i)(-1+5i)(-1-5i)−i−5⋅−1+1⋅−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2.1.5
Multiply -5−5 by -1−1.
-i+5+1⋅-1+1(-5i)(-1+5i)(-1-5i)−i+5+1⋅−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2.1.6
Multiply -1−1 by 11.
-i+5-1+1(-5i)(-1+5i)(-1-5i)−i+5−1+1(−5i)(−1+5i)(−1−5i)
Step 2.2.2.1.7
Multiply -5i−5i by 11.
-i+5-1-5i(-1+5i)(-1-5i)−i+5−1−5i(−1+5i)(−1−5i)
-i+5-1-5i(-1+5i)(-1-5i)−i+5−1−5i(−1+5i)(−1−5i)
Step 2.2.2.2
Subtract 5i5i from -i−i.
5-1-6i(-1+5i)(-1-5i)5−1−6i(−1+5i)(−1−5i)
Step 2.2.2.3
Subtract 11 from 55.
4-6i(-1+5i)(-1-5i)4−6i(−1+5i)(−1−5i)
4-6i(-1+5i)(-1-5i)4−6i(−1+5i)(−1−5i)
4-6i(-1+5i)(-1-5i)4−6i(−1+5i)(−1−5i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (-1+5i)(-1-5i)(−1+5i)(−1−5i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
4-6i-1(-1-5i)+5i(-1-5i)4−6i−1(−1−5i)+5i(−1−5i)
Step 2.3.1.2
Apply the distributive property.
4-6i-1⋅-1-1(-5i)+5i(-1-5i)4−6i−1⋅−1−1(−5i)+5i(−1−5i)
Step 2.3.1.3
Apply the distributive property.
4-6i-1⋅-1-1(-5i)+5i⋅-1+5i(-5i)4−6i−1⋅−1−1(−5i)+5i⋅−1+5i(−5i)
4-6i-1⋅-1-1(-5i)+5i⋅-1+5i(-5i)4−6i−1⋅−1−1(−5i)+5i⋅−1+5i(−5i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply -1−1 by -1−1.
4-6i1-1(-5i)+5i⋅-1+5i(-5i)4−6i1−1(−5i)+5i⋅−1+5i(−5i)
Step 2.3.2.2
Multiply -5−5 by -1−1.
4-6i1+5i+5i⋅-1+5i(-5i)4−6i1+5i+5i⋅−1+5i(−5i)
Step 2.3.2.3
Multiply -1−1 by 55.
4-6i1+5i-5i+5i(-5i)4−6i1+5i−5i+5i(−5i)
Step 2.3.2.4
Multiply -5−5 by 55.
4-6i1+5i-5i-25ii4−6i1+5i−5i−25ii
Step 2.3.2.5
Raise ii to the power of 11.
4-6i1+5i-5i-25(i1i)4−6i1+5i−5i−25(i1i)
Step 2.3.2.6
Raise ii to the power of 11.
4-6i1+5i-5i-25(i1i1)4−6i1+5i−5i−25(i1i1)
Step 2.3.2.7
Use the power rule aman=am+naman=am+n to combine exponents.
4-6i1+5i-5i-25i1+14−6i1+5i−5i−25i1+1
Step 2.3.2.8
Add 11 and 11.
4-6i1+5i-5i-25i24−6i1+5i−5i−25i2
Step 2.3.2.9
Subtract 5i5i from 5i5i.
4-6i1+0-25i24−6i1+0−25i2
Step 2.3.2.10
Add 11 and 00.
4-6i1-25i24−6i1−25i2
4-6i1-25i24−6i1−25i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2i2 as -1−1.
4-6i1-25⋅-14−6i1−25⋅−1
Step 2.3.3.2
Multiply -25−25 by -1−1.
4-6i1+254−6i1+25
4-6i1+254−6i1+25
Step 2.3.4
Add 11 and 2525.
4-6i264−6i26
4-6i264−6i26
4-6i264−6i26
Step 3
Step 3.1
Factor 22 out of 44.
2(2)-6i262(2)−6i26
Step 3.2
Factor 22 out of -6i−6i.
2(2)+2(-3i)262(2)+2(−3i)26
Step 3.3
Factor 22 out of 2(2)+2(-3i)2(2)+2(−3i).
2(2-3i)262(2−3i)26
Step 3.4
Cancel the common factors.
Step 3.4.1
Factor 22 out of 2626.
2(2-3i)2⋅132(2−3i)2⋅13
Step 3.4.2
Cancel the common factor.
2(2-3i)2⋅13
Step 3.4.3
Rewrite the expression.
2-3i13
2-3i13
2-3i13
Step 4
Split the fraction 2-3i13 into two fractions.
213+-3i13
Step 5
Move the negative in front of the fraction.
213-3i13