Ingresa un problema...
Trigonometría Ejemplos
Step 1
Resta de ambos lados de la ecuación.
Completa el cuadrado de .
Usa la forma , para obtener los valores de , y .
Considera la forma de vértice de una parábola.
Obtén el valor de con la fórmula .
Sustituye los valores de y en la fórmula .
Cancela el factor común de y .
Factoriza de .
Cancela los factores comunes.
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Divide por .
Obtén el valor de con la fórmula .
Sustituye los valores de , y en la fórmula .
Simplifica el lado derecho.
Simplifica cada término.
Eleva a la potencia de .
Multiplica por .
Divide por .
Multiplica por .
Resta de .
Sustituye los valores de , y en la forma de vértice .
Sustituye por en la ecuación .
Mueve al lado derecho de la ecuación mediante la suma de a ambos lados.
Completa el cuadrado de .
Usa la forma , para obtener los valores de , y .
Considera la forma de vértice de una parábola.
Obtén el valor de con la fórmula .
Sustituye los valores de y en la fórmula .
Simplifica el lado derecho.
Cancela el factor común de y .
Factoriza de .
Cancela los factores comunes.
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Cancela el factor común de y .
Factoriza de .
Cancela los factores comunes.
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Divide por .
Obtén el valor de con la fórmula .
Sustituye los valores de , y en la fórmula .
Simplifica el lado derecho.
Simplifica cada término.
Eleva a la potencia de .
Multiplica por .
Divide por .
Multiplica por .
Resta de .
Sustituye los valores de , y en la forma de vértice .
Sustituye por en la ecuación .
Mueve al lado derecho de la ecuación mediante la suma de a ambos lados.
Simplifica .
Suma y .
Suma y .
Divide cada término por para que el lado derecho sea igual a uno.
Simplifica cada término en la ecuación para establecer el lado derecho igual a . La ecuación ordinaria de una elipse o hipérbola requiere que el lado derecho de la ecuación sea .
Step 2
Esta es la forma de una elipse. Usa esta forma para determinar los valores usados a fin de obtener el centro, junto con los ejes mayor y menor de la elipse.
Step 3
Haz coincidir los valores de esta elipse con los de la ecuación ordinaria. La variable representa el radio del eje mayor de la elipse, representa el radio del eje menor de la elipse, representa el desplazamiento de x desde el origen y representa el desplazamiento de y desde el origen.
Step 4
El primer vértice de una elipse puede obtenerse al sumar a .
Sustituye los valores conocidos de , y en la fórmula.
Simplifica.
The second vertex of an ellipse can be found by subtracting from .
Sustituye los valores conocidos de , y en la fórmula.
Simplifica.
Las elipses tienen dos vértices.
:
:
:
:
Step 5