Ingresa un problema...
Trigonometría Ejemplos
Step 1
Para obtener la coordenada de del vértice, establece el interior del valor absoluto igual a . En este caso, .
Resuelve la ecuación para obtener la coordenada para el vértice del valor absoluto.
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
El valor exacto de es .
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Simplifica .
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Consolida las respuestas.
, para cualquier número entero
, para cualquier número entero
Reemplaza la variable con en la expresión.
El vértice del valor absoluto es .
Step 2
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Notación de intervalo:
Notación del constructor de conjuntos:
Step 3
El valor absoluto puede representarse gráficamente mediante los puntos alrededor del vértice
Step 4