Ingresa un problema...
Trigonometría Ejemplos
Step 1
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 2
Establece igual a .
Resuelve en .
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
El valor exacto de es .
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Divide por .
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Resuelve
Simplifica.
Multiplica por .
Suma y .
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Cancela el factor común de .
Cancela el factor común.
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 3
Establece igual a .
Resuelve en .
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
El valor exacto de es .
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Multiplica el numerador por la recíproca del denominador.
Multiplica .
Multiplica por .
Multiplica por .
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Resuelve
Simplifica.
Para escribir como una fracción con un denominador común, multiplica por .
Combina y .
Combina los numeradores sobre el denominador común.
Multiplica por .
Resta de .
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Multiplica el numerador por la recíproca del denominador.
Multiplica .
Multiplica por .
Multiplica por .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Cancela el factor común de .
Cancela el factor común.
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 4
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Step 5
Consolida las respuestas.
, para cualquier número entero