Ingresa un problema...
Trigonometría Ejemplos
Step 1
Resta de ambos lados de la ecuación.
Resta de ambos lados de la ecuación.
Step 2
Reemplaza con según la identidad de .
Step 3
Aplica la propiedad distributiva.
Multiplica por .
Multiplica por .
Step 4
Reordena el polinomio.
Step 5
Simplifica .
Simplifica con la obtención del factor común.
Mueve .
Reordena y .
Factoriza de .
Factoriza de .
Factoriza de .
Aplica la identidad pitagórica.
Step 6
Agrega paréntesis.
Sea . Sustituye por todos los casos de .
Reordena los términos.
Factoriza el máximo común divisor de cada grupo.
Agrupa los dos primeros términos y los dos últimos términos.
Factoriza el máximo común divisor (MCD) de cada grupo.
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Factoriza de .
Factoriza de .
Reescribe como .
Factoriza de .
Reemplaza todos los casos de con .
Step 7
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 8
Establece igual a .
Resuelve en .
Resta de ambos lados de la ecuación.
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Mueve el negativo al frente de la fracción.
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
Evalúa .
La función seno es negativa en el tercer y el cuarto cuadrante. Para obtener la segunda solución, resta la solución de para obtener un ángulo de referencia. A continuación, suma este ángulo de referencia a para obtener la solución en el tercer cuadrante.
Simplifica la expresión para obtener la segunda solución.
Resta de .
El ángulo resultante de es positivo, menor que y coterminal con .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
Suma a todos los ángulos negativos para obtener ángulos positivos.
Suma y para obtener el ángulo positivo.
Resta de .
Enumera los nuevos ángulos.
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 9
Establece igual a .
Resuelve en .
Divide cada término en la ecuación por .
Cancela el factor común de .
Cancela el factor común.
Divide por .
Separa las fracciones.
Convierte de a .
Divide por .
Separa las fracciones.
Convierte de a .
Divide por .
Multiplica por .
Resta de ambos lados de la ecuación.
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
La división de dos valores negativos da como resultado un valor positivo.
Divide por .
Simplifica el lado derecho.
Divide por .
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
Simplifica el lado derecho.
Evalúa .
La función tangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, suma el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Resuelve
Elimina los paréntesis.
Elimina los paréntesis.
Suma y .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 10
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Step 11
Consolida y en .
, para cualquier número entero