Trigonometría Ejemplos

حل من أجل x cos(6x)=0
Step 1
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Step 2
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
Step 3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Divide cada término en por .
Simplifica el lado izquierdo.
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Toca para ver más pasos...
Multiplica el numerador por la recíproca del denominador.
Multiplica .
Toca para ver más pasos...
Multiplica por .
Multiplica por .
Step 4
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Step 5
Resuelve
Toca para ver más pasos...
Simplifica.
Toca para ver más pasos...
Para escribir como una fracción con un denominador común, multiplica por .
Combina y .
Combina los numeradores sobre el denominador común.
Multiplica por .
Resta de .
Divide cada término en por y simplifica.
Toca para ver más pasos...
Divide cada término en por .
Simplifica el lado izquierdo.
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Toca para ver más pasos...
Multiplica el numerador por la recíproca del denominador.
Cancela el factor común de .
Toca para ver más pasos...
Factoriza de .
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Multiplica por .
Multiplica por .
Step 6
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Cancela el factor común de y .
Toca para ver más pasos...
Factoriza de .
Cancela los factores comunes.
Toca para ver más pasos...
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Step 7
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Step 8
Consolida las respuestas.
, para cualquier número entero
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información