Trigonometría Ejemplos

Hallar la inversa f(x)=1/4*sec(pix)
Paso 1
Escribe como una ecuación.
Paso 2
Intercambia las variables.
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Reescribe la ecuación como .
Paso 3.2
Multiplica ambos lados de la ecuación por .
Paso 3.3
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.3.1
Simplifica .
Toca para ver más pasos...
Paso 3.3.1.1
Combina y .
Paso 3.3.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.1.2.1
Cancela el factor común.
Paso 3.3.1.2.2
Reescribe la expresión.
Paso 3.4
Calcula la inversa de la secante de ambos lados de la ecuación para extraer del interior de la secante.
Paso 3.5
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.5.1
Divide cada término en por .
Paso 3.5.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.5.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.5.2.1.1
Cancela el factor común.
Paso 3.5.2.1.2
Divide por .
Paso 4
Reemplaza con para ver la respuesta final.
Paso 5
Verifica si es la inversa de .
Toca para ver más pasos...
Paso 5.1
Para verificar la inversa, comprueba si y .
Paso 5.2
Evalúa .
Toca para ver más pasos...
Paso 5.2.1
Establece la función de resultado compuesta.
Paso 5.2.2
Evalúa mediante la sustitución del valor de en .
Paso 5.2.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.2.3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.3.1.1
Cancela el factor común.
Paso 5.2.3.1.2
Reescribe la expresión.
Paso 5.2.3.2
Multiplica por .
Paso 5.3
Evalúa .
Toca para ver más pasos...
Paso 5.3.1
Establece la función de resultado compuesta.
Paso 5.3.2
Evalúa mediante la sustitución del valor de en .
Paso 5.3.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.3.3.1
Cancela el factor común.
Paso 5.3.3.2
Reescribe la expresión.
Paso 5.3.4
Las funciones secante y arcosecante son inversas.
Paso 5.3.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.3.5.1
Factoriza de .
Paso 5.3.5.2
Cancela el factor común.
Paso 5.3.5.3
Reescribe la expresión.
Paso 5.4
Como y , entonces es la inversa de .